Land cover classification using machine learning algorithms on GEE, and its relationship with gaseous air pollutants based on remote sensing data
dc.contributor.advisor | Szabó, Szilárd | |
dc.contributor.author | Guaman Pintado, Pamela Maricela | |
dc.contributor.department | DE--Természettudományi és Technológiai Kar--Földtudományi Intézet | |
dc.date.accessioned | 2023-05-05T06:57:12Z | |
dc.date.available | 2023-05-05T06:57:12Z | |
dc.date.created | 2023-05-04 | |
dc.description.abstract | This study explores the application of machine learning algorithms on Google Earth Engine (GEE) for land cover classification and examines the relationship between different land cover types and gaseous air pollutants (O3, NO2, SO2) using remote sensing data. The research focuses on evaluating the performance of various machine learning techniques, such as Random Forest, Support Vector Machines, and CART, in classifying land cover types. | |
dc.description.corrector | LB | |
dc.description.course | Geography MSc | |
dc.description.degree | MSc/MA | |
dc.format.extent | 55 | |
dc.identifier.uri | https://hdl.handle.net/2437/351911 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Land Cover | |
dc.subject | Machine Learning | |
dc.subject | GEE | |
dc.subject | Air pollutantss | |
dc.subject.dspace | DEENK Témalista::Informatika::Geoinformatika | |
dc.subject.dspace | DEENK Témalista::Földtudományok::Környezetföldrajz | |
dc.subject.dspace | DEENK Témalista::Földtudományok::Természeti földrajz | |
dc.title | Land cover classification using machine learning algorithms on GEE, and its relationship with gaseous air pollutants based on remote sensing data |