Predicting Genetic Disorder on Encrypted Data with Concrete ML Homomorphic Encryption Library
| dc.contributor.advisor | Herendi, Tamás | |
| dc.contributor.author | Nguyen, Ngoc Hai Dang | |
| dc.contributor.department | DE--Informatikai Kar | |
| dc.date.accessioned | 2025-06-26T20:47:21Z | |
| dc.date.available | 2025-06-26T20:47:21Z | |
| dc.date.created | 2025-04-17 | |
| dc.description.abstract | This paper investigates the use of Fully Homomorphic Encryption (FHE) through the ConcreteML library to ensure data privacy in machine learning applications. The research focuses on predicting genetic disorders using a Gradient Boosted Tree model trained on a dataset of 22,000 genomic samples. ConcreteML enables encrypted inference without exposing sensitive patient data during cloud-based processing. The results show that FHE-enabled models maintain high accuracy, comparable to their plaintext counterparts, with acceptable performance trade-offs. The thesis also discusses key technical challenges, including quantization, model compilation, and managing computational overhead. Ultimately, this work demonstrates the viability of secure, privacy-preserving machine learning in genomics using modern FHE tools. | |
| dc.description.course | Programtervező informatikus | |
| dc.description.degree | MSc/MA | |
| dc.format.extent | 57 | |
| dc.identifier.uri | https://hdl.handle.net/2437/394771 | |
| dc.language.iso | en | |
| dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Fully Homomorphic Encryption, Machine Learning | |
| dc.subject.dspace | Informatics::Computer Science | |
| dc.title | Predicting Genetic Disorder on Encrypted Data with Concrete ML Homomorphic Encryption Library |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 796.28 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: