Empowering Inclusivity: Real-time Sign Language Processing

dc.contributor.advisorFazekas, Attila
dc.contributor.authorDakhli, Wiem
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-30T13:44:14Z
dc.date.available2025-06-30T13:44:14Z
dc.date.created2025-04-30
dc.description.abstractTrue inclusivity means ensuring every voice, spoken or signed, is heard; this thesis empowers the deaf and hard-of-hearing by translating ASL into digital language. It presents a machine-learning system that recognizes static gestures (the ASL alphabet, 100 images each) via a Random Forest classifier and dynamic gestures (“hello,” etc., 30 videos each) via an LSTM network architecture. MediaPipe and OpenCV extract key hand and body landmarks to feed both models, achieving robust real-time recognition performance across both static and dynamic ASL.
dc.description.courseProgramtervező informatikus
dc.description.degreeMSc/MA
dc.format.extent65
dc.identifier.urihttps://hdl.handle.net/2437/395084
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectSign Language recognition
dc.subjectAmerican Sign Language
dc.subjectImage Processing
dc.subjectLSTM networks
dc.subjectNeural Networks
dc.subjectImage Processing
dc.subjectRandom Forest Classifier
dc.subjectIsolated Sign language
dc.subjectContinuous Sign language
dc.subjectComputer Vision
dc.subjectMediaPipe
dc.subjectOpenCV
dc.subjectTensorFlow
dc.subject.dspaceInformatics::Computer Science
dc.titleEmpowering Inclusivity: Real-time Sign Language Processing
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
2.33 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények