Empowering Inclusivity: Real-time Sign Language Processing
| dc.contributor.advisor | Fazekas, Attila | |
| dc.contributor.author | Dakhli, Wiem | |
| dc.contributor.department | DE--Informatikai Kar | |
| dc.date.accessioned | 2025-06-30T13:44:14Z | |
| dc.date.available | 2025-06-30T13:44:14Z | |
| dc.date.created | 2025-04-30 | |
| dc.description.abstract | True inclusivity means ensuring every voice, spoken or signed, is heard; this thesis empowers the deaf and hard-of-hearing by translating ASL into digital language. It presents a machine-learning system that recognizes static gestures (the ASL alphabet, 100 images each) via a Random Forest classifier and dynamic gestures (“hello,” etc., 30 videos each) via an LSTM network architecture. MediaPipe and OpenCV extract key hand and body landmarks to feed both models, achieving robust real-time recognition performance across both static and dynamic ASL. | |
| dc.description.course | Programtervező informatikus | |
| dc.description.degree | MSc/MA | |
| dc.format.extent | 65 | |
| dc.identifier.uri | https://hdl.handle.net/2437/395084 | |
| dc.language.iso | en | |
| dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Sign Language recognition | |
| dc.subject | American Sign Language | |
| dc.subject | Image Processing | |
| dc.subject | LSTM networks | |
| dc.subject | Neural Networks | |
| dc.subject | Image Processing | |
| dc.subject | Random Forest Classifier | |
| dc.subject | Isolated Sign language | |
| dc.subject | Continuous Sign language | |
| dc.subject | Computer Vision | |
| dc.subject | MediaPipe | |
| dc.subject | OpenCV | |
| dc.subject | TensorFlow | |
| dc.subject.dspace | Informatics::Computer Science | |
| dc.title | Empowering Inclusivity: Real-time Sign Language Processing |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 2.33 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: