HarmonyHands

dc.contributor.advisorAdamkó, Attila Tamás
dc.contributor.authorAlsherif, Mohamed Alsayed Mohamed Alsayed
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-02-22T20:18:43Z
dc.date.available2025-02-22T20:18:43Z
dc.date.created2024
dc.description.abstractHarmony Hands" is a project designed to bridge communication gaps between hearing individuals and the deaf or hard-of-hearing community by translating sign language gestures into spoken or written text. The system uses a convolutional neural network (CNN) developed with TensorFlow for recognizing gestures in real time, utilizing computer vision techniques. The frontend is built with React for a responsive user interface, while the backend employs Django, facilitating data management through a RESTful API. The project also utilizes MariaDB for database management, ensuring efficient data storage. Although it currently focuses on one sign language, the system is scalable for future expansions to other languages and dialects, aiming to make communication more accessible and inclusive across various settings.
dc.description.courseMérnökinformatikus
dc.description.degreeBSc/BA
dc.format.extent44
dc.identifier.urihttps://hdl.handle.net/2437/387317
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectAI
dc.subjectBackend
dc.subjectFrontend
dc.subject.dspaceInformatics
dc.titleHarmonyHands
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
2.23 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények