HarmonyHands
| dc.contributor.advisor | Adamkó, Attila Tamás | |
| dc.contributor.author | Alsherif, Mohamed Alsayed Mohamed Alsayed | |
| dc.contributor.department | DE--Informatikai Kar | |
| dc.date.accessioned | 2025-02-22T20:18:43Z | |
| dc.date.available | 2025-02-22T20:18:43Z | |
| dc.date.created | 2024 | |
| dc.description.abstract | Harmony Hands" is a project designed to bridge communication gaps between hearing individuals and the deaf or hard-of-hearing community by translating sign language gestures into spoken or written text. The system uses a convolutional neural network (CNN) developed with TensorFlow for recognizing gestures in real time, utilizing computer vision techniques. The frontend is built with React for a responsive user interface, while the backend employs Django, facilitating data management through a RESTful API. The project also utilizes MariaDB for database management, ensuring efficient data storage. Although it currently focuses on one sign language, the system is scalable for future expansions to other languages and dialects, aiming to make communication more accessible and inclusive across various settings. | |
| dc.description.course | Mérnökinformatikus | |
| dc.description.degree | BSc/BA | |
| dc.format.extent | 44 | |
| dc.identifier.uri | https://hdl.handle.net/2437/387317 | |
| dc.language.iso | en | |
| dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | AI | |
| dc.subject | Backend | |
| dc.subject | Frontend | |
| dc.subject.dspace | Informatics | |
| dc.title | HarmonyHands |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 2.23 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: