A machine learning method for today’s security issue

dc.contributor.advisorOláh, Norbert
dc.contributor.authorMustafa, Osama Yousef Hussein
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T21:40:20Z
dc.date.available2025-06-26T21:40:20Z
dc.date.created2024-11-14
dc.description.abstractThis thesis highlights the advantages and disadvantages of machine learning (ML), which is crucial to cybersecurity. In addition to outlining the ways in which ML's flexibility and pattern recognition might bolster defences, it also highlights potential hazards such as biases, data poisoning, and privacy concerns. The study examines a range of attack and defence scenarios, including both proactive and reactive approaches to ML system security. Responsible AI is promoted by discussing ethical issues, such as the necessity of transparency. As a potent instrument in contemporary cybersecurity, the thesis promotes constant improvement to guarantee that ML is robust against new cyberthreats.
dc.description.courseGazdaságinformatikus
dc.description.degreeBSc/BA
dc.format.extent42
dc.identifier.urihttps://hdl.handle.net/2437/394840
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectMachine learning security
dc.subject.dspaceInformatics::IT Systems
dc.titleA machine learning method for today’s security issue
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Thesis.pdf
Méret:
1.04 MB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények