CA MODELLING AND IMPROVED ALGORITHM: SAFE AND EFFICIENT DECISION MAKING FOR AUTONOMOUS DRIVING SYSTEM

dc.contributor.advisorAlmusawi, Husam Abdulkareem
dc.contributor.authorTao, Yufei
dc.contributor.departmentDE--Műszaki Kar
dc.date.accessioned2025-09-04T14:53:48Z
dc.date.available2025-09-04T14:53:48Z
dc.date.created2025
dc.description.abstractThis study proposes a multi-model combinatorial congestion mitigation approach to solve the traffic problem of autonomous cars. The proposed model framework consists of three parts: a road modelling module based on meta cellular automata, a traffic flow speed prediction module consisting of an optimised long and short-term memory algorithm using a sparrow search algorithm, and a following distance prediction module that determines the optimal safe following distance using an adaptive cruise control algorithm. In simulation, this intelligent traffic model for autonomous cars can be applied to various complex traffic scenarios to improve traffic efficiency while reducing the collision risk of autonomous cars.
dc.description.courseMechatronical Engineeringen
dc.description.degreeMSc/MA
dc.format.extent78
dc.identifier.urihttps://hdl.handle.net/2437/397234
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectinsertintelligent transportation system
dc.subjectmachine learning algorithms
dc.subjecttraffic safety
dc.subject.dspaceEngineering Sciences
dc.titleCA MODELLING AND IMPROVED ALGORITHM: SAFE AND EFFICIENT DECISION MAKING FOR AUTONOMOUS DRIVING SYSTEM
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 2 (Összesen 2)
Nincs kép
Név:
MSc Thesis.pdf
Méret:
3.25 MB
Formátum:
Adobe Portable Document Format
Leírás:
Nincs kép
Név:
Thesis_classification_request.pdf
Méret:
111.24 KB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.69 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: