Fixed Points in Quantum Theories

dc.contributor.advisorNagy, Sándor
dc.contributor.authorGürses, Eyüp
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Fizikai Intézethu_HU
dc.date.accessioned2020-05-14T09:38:29Z
dc.date.available2020-05-14T09:38:29Z
dc.date.created2020-05-12
dc.description.abstractExact renormalization group flow equations are treated numerically and phase structure is obtained. The phase structure of the phi^4 model is calculated. Convergence behavior of the critical exponents are investigated in two cases where Wegner-Houghton related sharp cutoff and Litim’s regulator used as N increases. Critical exponent nu is found to be 0.685399 and 0.649169 for the Wegner-Houghton and Litim’s regulator case respectively at N=10. It’s clear from the plots that in the latter situation critical exponents converge faster compared to the former situation.hu_HU
dc.description.correctorhbk
dc.description.coursePhysicshu_HU
dc.description.degreeBSc/BAhu_HU
dc.format.extent31hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/287197
dc.language.isoenhu_HU
dc.subjectCritical exponenthu_HU
dc.subjectWegner-Houghtonhu_HU
dc.subjectLitimhu_HU
dc.subject.dspaceDEENK Témalista::Fizikahu_HU
dc.titleFixed Points in Quantum Theorieshu_HU
Fájlok