Fixed Points in Quantum Theories
| dc.contributor.advisor | Nagy, Sándor | |
| dc.contributor.author | Gürses, Eyüp | |
| dc.contributor.department | DE--Természettudományi és Technológiai Kar--Fizikai Intézet | hu_HU |
| dc.date.accessioned | 2020-05-14T09:38:29Z | |
| dc.date.available | 2020-05-14T09:38:29Z | |
| dc.date.created | 2020-05-12 | |
| dc.description.abstract | Exact renormalization group flow equations are treated numerically and phase structure is obtained. The phase structure of the phi^4 model is calculated. Convergence behavior of the critical exponents are investigated in two cases where Wegner-Houghton related sharp cutoff and Litim’s regulator used as N increases. Critical exponent nu is found to be 0.685399 and 0.649169 for the Wegner-Houghton and Litim’s regulator case respectively at N=10. It’s clear from the plots that in the latter situation critical exponents converge faster compared to the former situation. | hu_HU |
| dc.description.corrector | hbk | |
| dc.description.course | Physics | hu_HU |
| dc.description.degree | BSc/BA | hu_HU |
| dc.format.extent | 31 | hu_HU |
| dc.identifier.uri | http://hdl.handle.net/2437/287197 | |
| dc.language.iso | en | hu_HU |
| dc.subject | Critical exponent | hu_HU |
| dc.subject | Wegner-Houghton | hu_HU |
| dc.subject | Litim | hu_HU |
| dc.subject.dspace | DEENK Témalista::Fizika | hu_HU |
| dc.title | Fixed Points in Quantum Theories | hu_HU |