Why is the gamma function so as it is?

dc.contributor.authorGronau, Detlef
dc.date.accessioned2024-09-04T09:44:36Z
dc.date.available2024-09-04T09:44:36Z
dc.date.issued2003-06-01
dc.description.abstractThis is a historical note on the gamma function Γ. The question is, why is Γ(n) for naturals n equal to (n−1)! and not equal to n! (the factorial function n! = 1·2 · · · n) ? Was A. M. Legendre responsible for this transformation, or was it L. Euler? And, who was the first who gave a representation of the so called Euler gamma function?en
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 1 No. 1 (2003) , 43-53
dc.identifier.doihttps://doi.org/10.5485/TMCS.2003.0008
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue1
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379494
dc.identifier.volume1
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14684
dc.rights.accessOpen Access
dc.rights.ownerDetlef Gronau
dc.subjecthistory of mathematicsen
dc.subjectgamma functionen
dc.titleWhy is the gamma function so as it is?en
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF
Méret:
174.98 KB
Formátum:
Adobe Portable Document Format