Why is the gamma function so as it is?

dc.contributor.authorGronau, Detlef
dc.date.accessioned2024-09-04T09:44:36Z
dc.date.available2024-09-04T09:44:36Z
dc.date.issued2003-06-01
dc.description.abstractThis is a historical note on the gamma function Γ. The question is, why is Γ(n) for naturals n equal to (n−1)! and not equal to n! (the factorial function n! = 1·2 · · · n) ? Was A. M. Legendre responsible for this transformation, or was it L. Euler? And, who was the first who gave a representation of the so called Euler gamma function?en
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 1 No. 1 (2003) , 43-53
dc.identifier.doihttps://doi.org/10.5485/TMCS.2003.0008
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue1
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379494en
dc.identifier.volume1
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14684
dc.rights.accessOpen Access
dc.rights.ownerDetlef Gronau
dc.subjecthistory of mathematicsen
dc.subjectgamma functionen
dc.titleWhy is the gamma function so as it is?en
dc.typefolyóiratcikkhu
dc.typearticleen
dc.type.detailedidegen nyelvű folyóiratközlemény hazai lapbanhu
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF
Méret:
174.98 KB
Formátum:
Adobe Portable Document Format