Developing AI Agents for Hazard‐Aware Game Environments Using Reinforcement Learning
dc.contributor.advisor | Harangi, Balázs | |
dc.contributor.author | Kumar, Dheeraj | |
dc.contributor.department | DE--Informatikai Kar | |
dc.date.accessioned | 2025-06-26T20:58:30Z | |
dc.date.available | 2025-06-26T20:58:30Z | |
dc.date.created | 2025-04-24 | |
dc.description.abstract | This project is Unity-based multi-agent using reinforcement learning environment featuring a 2 players. The primary agent and a spider-agent, is trained using ML-Agents to chase prey agent within a 3D arena filled with static obstacles, collectible coins, and hazards like poison food. The environment is designed to challenge agents with navigation complexity, partial observations, and decision-making under pressure. The project highlights the potential of reinforcement learning in game AI and showcases Unity as a powerful platform for simulating complex multi-agent scenarios. | |
dc.description.course | Programtervező informatikus | |
dc.description.degree | BSc/BA | |
dc.format.extent | 52 | |
dc.identifier.uri | https://hdl.handle.net/2437/394785 | |
dc.language.iso | en | |
dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Unity | |
dc.subject | ML Agent | |
dc.subject | Reinforcement Learning | |
dc.subject.dspace | Informatics::Computer Science | |
dc.title | Developing AI Agents for Hazard‐Aware Game Environments Using Reinforcement Learning |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 1.6 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: