Developing AI Agents for Hazard‐Aware Game Environments Using Reinforcement Learning

dc.contributor.advisorHarangi, Balázs
dc.contributor.authorKumar, Dheeraj
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T20:58:30Z
dc.date.available2025-06-26T20:58:30Z
dc.date.created2025-04-24
dc.description.abstractThis project is Unity-based multi-agent using reinforcement learning environment featuring a 2 players. The primary agent and a spider-agent, is trained using ML-Agents to chase prey agent within a 3D arena filled with static obstacles, collectible coins, and hazards like poison food. The environment is designed to challenge agents with navigation complexity, partial observations, and decision-making under pressure. The project highlights the potential of reinforcement learning in game AI and showcases Unity as a powerful platform for simulating complex multi-agent scenarios.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent52
dc.identifier.urihttps://hdl.handle.net/2437/394785
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectUnity
dc.subjectML Agent
dc.subjectReinforcement Learning
dc.subject.dspaceInformatics::Computer Science
dc.titleDeveloping AI Agents for Hazard‐Aware Game Environments Using Reinforcement Learning
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
1.6 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények