Medical Image Processing with Deep Learning
| dc.contributor.advisor | Hajdu, András | |
| dc.contributor.author | Krishna, Swaroop | |
| dc.contributor.department | DE--Informatikai Kar | |
| dc.date.accessioned | 2025-02-22T22:44:19Z | |
| dc.date.available | 2025-02-22T22:44:19Z | |
| dc.date.created | 2024 | |
| dc.description.abstract | This thesis focuses on melanoma detection from dermoscopic images using deep learning for early diagnosis. EfficientNet-B3 was used in this research work with transfer learning by initializing the pre-trained weights on ImageNet for better feature extraction. Data augmentation, Early Stopping and K-fold cross-validation techniques were employed to avoid overfitting. Ensemble learning was used to achieve better accuracy and evaluate the overall model. The model has achieved an accuracy of 88.96%. | |
| dc.description.course | Mérnökinformatikus | |
| dc.description.degree | BSc/BA | |
| dc.format.extent | 45 | |
| dc.identifier.uri | https://hdl.handle.net/2437/387458 | |
| dc.language.iso | en | |
| dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Medical Image Processing | |
| dc.subject | Melanoma Cell Detection | |
| dc.subject.dspace | Informatics | |
| dc.title | Medical Image Processing with Deep Learning |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 1.09 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: