Medical Image Processing with Deep Learning

dc.contributor.advisorHajdu, András
dc.contributor.authorKrishna, Swaroop
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-02-22T22:44:19Z
dc.date.available2025-02-22T22:44:19Z
dc.date.created2024
dc.description.abstractThis thesis focuses on melanoma detection from dermoscopic images using deep learning for early diagnosis. EfficientNet-B3 was used in this research work with transfer learning by initializing the pre-trained weights on ImageNet for better feature extraction. Data augmentation, Early Stopping and K-fold cross-validation techniques were employed to avoid overfitting. Ensemble learning was used to achieve better accuracy and evaluate the overall model. The model has achieved an accuracy of 88.96%.
dc.description.courseMérnökinformatikus
dc.description.degreeBSc/BA
dc.format.extent45
dc.identifier.urihttps://hdl.handle.net/2437/387458
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectMedical Image Processing
dc.subjectMelanoma Cell Detection
dc.subject.dspaceInformatics
dc.titleMedical Image Processing with Deep Learning
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
1.09 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények