Comparative Analysis of Different Image Augmentation Strategies for Automated Detection of European Mammals in Camera Trap Footage

dc.contributor.advisorBán, Miklós
dc.contributor.advisorOláh, Gergő
dc.contributor.authorTRAN, DUC HOANG
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Biológiai és Ökológiai Intézet
dc.date.accessioned2025-06-16T09:49:04Z
dc.date.available2025-06-16T09:49:04Z
dc.date.created2025-05-08
dc.description.abstractArtificial intelligence (AI) techniques are increasingly being used to automate image processing. However, state-of-the-art deep learning methods require large amounts of data and are sensitive to class imbalances. When these models receive insufficient or non-diverse training data, they can suffer from overfitting and reduced generalization ability. One solution is to implement image augmentation, which artificially increases dataset size and balance by simulating real-world variations of existing data points. Images can be augmented in various ways (resizing, rotating, mixing, coloring, etc.), and we refer to the combination of applied augmentations as an augmentation strategy. The optimal strategy varies depending on image content and research objectives.
dc.description.courseBiology
dc.description.degreeMSc/MA
dc.format.extent30
dc.identifier.urihttps://hdl.handle.net/2437/391838
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectcamera trap
dc.subjectautomated detection
dc.subjectAI model
dc.subjectaugmentation
dc.subjectEuropean mammals
dc.subjectMegaDetector
dc.subjectYOLO
dc.subject.dspaceBiology::Zoology
dc.titleComparative Analysis of Different Image Augmentation Strategies for Automated Detection of European Mammals in Camera Trap Footage
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
TDH_thesis.pdf
Méret:
1.08 MB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: