Exploring Reinforcement Learning in AI agents for Video games
| dc.contributor.advisor | Harangi, Balázs | |
| dc.contributor.author | Kaddah, Zohair | |
| dc.contributor.department | DE--Informatikai Kar | |
| dc.date.accessioned | 2025-06-26T20:59:09Z | |
| dc.date.available | 2025-06-26T20:59:09Z | |
| dc.date.created | 2025-04-16 | |
| dc.description.abstract | My thesis explores the use of reinforcement learning to develop intelligent agents in a basic 3D tank battle environment. The project's main goal is to train an AI agent to move around the game space, aim, and attack using the Proximal Policy Optimization algorithm. I used Unity to create the project and set up the ML-Agents Toolkit for training. The AI agent demonstrated basic tactical behaviors such as seeking enemies and avoiding obstacles. Overall, the thesis highlights the importance of reinforcement learning in game development. | |
| dc.description.course | Programtervező informatikus | |
| dc.description.degree | BSc/BA | |
| dc.format.extent | 42 | |
| dc.identifier.uri | https://hdl.handle.net/2437/394786 | |
| dc.language.iso | en | |
| dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Artificial Intelligence | |
| dc.subject | Game Development | |
| dc.subject | Reinforcement Learning | |
| dc.subject.dspace | Informatics::Computer Science | |
| dc.title | Exploring Reinforcement Learning in AI agents for Video games |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 1.73 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: