sentiment analysis of amazon product reviews using text mining

dc.contributor.advisorIspany , Marton
dc.contributor.authorAung, Htet Htet
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2024-02-01T21:39:47Z
dc.date.available2024-02-01T21:39:47Z
dc.date.created2023-11-15
dc.description.abstractThis study has applied five different machine learning algorithms of Bernoulli Naive Bayes, Complement Naive Bayes, Logistic Regression, Linear Support Vector Machine and Random Forest on the Amazon fine food products reviews to predict sentiment (positive or negative). As mentioned above, the dataset is imbalanced. Therefore, the data has been prepared to be balanced and qualified using random resampling and random undersampling. After balancing the data, the size of data has been decreased due to undersampling. This study has conducted three experiments using unigrams, bigrams, and trigrams in TF-IDF. The results from the study showed that in terms of accuracy, the Linear Support Vector Classifier model got the highest accuracy (91.21) and outperformed among the proposed models while the Naive Bayes models had the lowest accuracies. In terms of running time, Naive Bayes models were the fastest ones than the other models while the Random Forest Classifier consumed the longest time among other models.
dc.description.courseProgramtervező informatikus
dc.description.degreeMSc/MA
dc.format.extent41
dc.identifier.urihttps://hdl.handle.net/2437/365969
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectNatural Language Processing (NLP),
dc.subjectSentiment Analysis
dc.subjectText Mining
dc.subjectMachine Learning
dc.subjectTokenization
dc.subjectWord2vec
dc.subjectN-gram
dc.subjectProduct Reviews
dc.subject.dspaceDEENK Témalista::Informatika
dc.titlesentiment analysis of amazon product reviews using text mining
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
1.67 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények