Enhancing the Automated Classification of Dermatological Images by Considering Skin Tone
dc.contributor.advisor | Tóth, János | |
dc.contributor.author | Muyera, Shalom Afwande | |
dc.contributor.department | DE--Informatikai Kar | |
dc.date.accessioned | 2024-06-23T18:15:04Z | |
dc.date.available | 2024-06-23T18:15:04Z | |
dc.date.created | 2024-04-22 | |
dc.description.abstract | The field of dermatological image classification has greatly advanced by adopting Machine Learning and Artificial Intelligence. However, it faces some challenges and gaps, such as a lack of diversity in classification models, which leads to misclassification and a lack of efficiency. This research aims at enhancing the correct classification of dermatological images by considering skin tone diversity. A combination of the Fitzpatrick 17k and DDI datasets is used and because of their diversity, transfer learning using EfficientNetB0 is the preferred classification model. Two machine-learning models are created, trained, and tested using images from different skin tones, and the results are evaluated. | |
dc.description.course | Mérnökinformatikus | |
dc.description.degree | MSc/MA | |
dc.format.extent | 49 | |
dc.identifier.uri | https://hdl.handle.net/2437/374584 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Skin Tone | |
dc.subject | Dermatological Images | |
dc.subject | Image Classification | |
dc.subject | Transfer Learning | |
dc.subject.dspace | Informatics | |
dc.title | Enhancing the Automated Classification of Dermatological Images by Considering Skin Tone |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 950.21 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: