Enhancing the Automated Classification of Dermatological Images by Considering Skin Tone

dc.contributor.advisorTóth, János
dc.contributor.authorMuyera, Shalom Afwande
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2024-06-23T18:15:04Z
dc.date.available2024-06-23T18:15:04Z
dc.date.created2024-04-22
dc.description.abstractThe field of dermatological image classification has greatly advanced by adopting Machine Learning and Artificial Intelligence. However, it faces some challenges and gaps, such as a lack of diversity in classification models, which leads to misclassification and a lack of efficiency. This research aims at enhancing the correct classification of dermatological images by considering skin tone diversity. A combination of the Fitzpatrick 17k and DDI datasets is used and because of their diversity, transfer learning using EfficientNetB0 is the preferred classification model. Two machine-learning models are created, trained, and tested using images from different skin tones, and the results are evaluated.
dc.description.courseMérnökinformatikus
dc.description.degreeMSc/MA
dc.format.extent49
dc.identifier.urihttps://hdl.handle.net/2437/374584
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectSkin Tone
dc.subjectDermatological Images
dc.subjectImage Classification
dc.subjectTransfer Learning
dc.subject.dspaceInformatics
dc.titleEnhancing the Automated Classification of Dermatological Images by Considering Skin Tone
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
950.21 KB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények