Numerical Methods for Ordinary Differential Equations

dc.contributor.advisorFazekas, Borbála Andrea
dc.contributor.authorMasasila, Nyanga Honda
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Matematikai Intézethu_HU
dc.date.accessioned2020-05-14T08:25:54Z
dc.date.available2020-05-14T08:25:54Z
dc.date.created2020-05-08
dc.description.abstractSome ordinary differential equations do not have exact solutions. Their solutions can be approximated by numerical methods. This thesis presents several numerical methods for solving IVPs. Moreover, the methods are compared in terms of their accuracy, convergence, and consistency. Among all the selected methods, the four-stage Runge-Kutta method of fourth-order is verified to be the most effective method as it could be expected.hu_HU
dc.description.correctorSz.G.
dc.description.courseApplied Mathematicshu_HU
dc.description.degreeMSc/MAhu_HU
dc.format.extent47hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/287179
dc.language.isoenhu_HU
dc.subjectEulerhu_HU
dc.subjectRunge-Kuttahu_HU
dc.subjectAdamshu_HU
dc.subject.dspaceDEENK Témalista::Matematikahu_HU
dc.titleNumerical Methods for Ordinary Differential Equationshu_HU
Fájlok