modélisation d'un zoom au moyen de microscopes virtuels

dc.contributor.author, André
dc.contributor.author, Jacques
dc.contributor.author, Valérie
dc.date.accessioned2024-09-04T09:45:01Z
dc.date.available2024-09-04T09:45:01Z
dc.date.issued2004-12-01
dc.description.abstractIn this paper, we explain how a computer works when "zooms" are made around a point on a planar curve. This modelisation leads to an easy and algorithmic method to find the (vertical or not vertical) tangents for the studied curve.fr_FR
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 2 No. 2 (2004) , 319-335
dc.identifier.doihttps://doi.org/10.5485/TMCS.2004.0063
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue2
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379538
dc.identifier.volume2
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14728
dc.rights.accessOpen Access
dc.rights.ownerAndré Antibi, Jacques Bair et Valérie Henry
dc.subjectZoomfr_FR
dc.subjectmicroscope virtuelfr_FR
dc.subjecttangentefr_FR
dc.subjectpoint de non dérivabilitéfr_FR
dc.subjectlimite de courbesfr_FR
dc.subjectconvergence uniformefr_FR
dc.subjectdidactique des mathématiquesfr_FR
dc.titlemodélisation d'un zoom au moyen de microscopes virtuelsen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF (French)
Méret:
261.96 KB
Formátum:
Adobe Portable Document Format