modélisation d'un zoom au moyen de microscopes virtuels
dc.contributor.author | , André | |
dc.contributor.author | , Jacques | |
dc.contributor.author | , Valérie | |
dc.date.accessioned | 2024-09-04T09:45:01Z | |
dc.date.available | 2024-09-04T09:45:01Z | |
dc.date.issued | 2004-12-01 | |
dc.description.abstract | In this paper, we explain how a computer works when "zooms" are made around a point on a planar curve. This modelisation leads to an easy and algorithmic method to find the (vertical or not vertical) tangents for the studied curve. | fr_FR |
dc.format | application/pdf | |
dc.identifier.citation | Teaching Mathematics and Computer Science, Vol. 2 No. 2 (2004) , 319-335 | |
dc.identifier.doi | https://doi.org/10.5485/TMCS.2004.0063 | |
dc.identifier.eissn | 2676-8364 | |
dc.identifier.issn | 1589-7389 | |
dc.identifier.issue | 2 | |
dc.identifier.jatitle | Teach. Math. Comp. Sci. | |
dc.identifier.jtitle | Teaching Mathematics and Computer Science | |
dc.identifier.uri | https://hdl.handle.net/2437/379538 | |
dc.identifier.volume | 2 | |
dc.language | en | |
dc.relation | https://ojs.lib.unideb.hu/tmcs/article/view/14728 | |
dc.rights.access | Open Access | |
dc.rights.owner | André Antibi, Jacques Bair et Valérie Henry | |
dc.subject | Zoom | fr_FR |
dc.subject | microscope virtuel | fr_FR |
dc.subject | tangente | fr_FR |
dc.subject | point de non dérivabilité | fr_FR |
dc.subject | limite de courbes | fr_FR |
dc.subject | convergence uniforme | fr_FR |
dc.subject | didactique des mathématiques | fr_FR |
dc.title | modélisation d'un zoom au moyen de microscopes virtuels | en |
dc.type | folyóiratcikk | hu |
dc.type | article | en |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)