Comparative Study of Deep Learning Models for Schizophrenia Classification from fMRI Images
dc.contributor.advisor | Hajdu, András | |
dc.contributor.author | Sarkar, Juliet Polok | |
dc.contributor.department | DE--Informatikai Kar | |
dc.date.accessioned | 2024-06-23T18:46:34Z | |
dc.date.available | 2024-06-23T18:46:34Z | |
dc.date.created | 2024-04-15 | |
dc.description.abstract | This thesis investigates the effectiveness of five deep-learning architectures for medical image classification (Schizophrenia). The COBRE dataset was used to train and evaluate the models. The outcomes demonstrated notable differences in performance, with high accuracy rates being attained by CNN models. While the CNN-LSTM hybrid model and the enhanced CNN model demonstrated encouraging performance, hardware constraints must be taken into account. The research highlights how crucial it is to choose the right deep-learning architectures for tasks involving the classification of medical images. | |
dc.description.course | Mérnökinformatikus | |
dc.description.degree | MSc/MA | |
dc.format.extent | 58 | |
dc.identifier.uri | https://hdl.handle.net/2437/374630 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Deep learning | |
dc.subject | Medical imaging | |
dc.subject | Convolutional neural networks (CNNs) | |
dc.subject | Image classification | |
dc.subject | fMRI | |
dc.subject | EDA | |
dc.subject | Neuroimaging | |
dc.subject.dspace | Informatics::Information Technology | |
dc.subject.dspace | Informatics::Computer Science | |
dc.subject.dspace | Biology::Biotechnology | |
dc.title | Comparative Study of Deep Learning Models for Schizophrenia Classification from fMRI Images |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 2.29 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.95 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: