Advanced Health Monitoring System with Mobile Application

dc.contributor.advisorIstván, Balajti
dc.contributor.authorSayed, Hana Hesham Ibrahim
dc.contributor.departmentDE--Műszaki Kar
dc.date.accessioned2025-09-04T16:29:16Z
dc.date.available2025-09-04T16:29:16Z
dc.date.created2024
dc.description.abstractThis paper outlines the development of a prototype health monitoring system. This system integrates five specifically chosen sensors based on their plethora of connections and low cost, which address cost-efficiency concerns. The five sensors are heart rate, pulse oximetry, temperature, galvanic skin response (GSR), and blood glucose for diabetes monitoring. The Raspberry Pi 5 was selected as the controller for this system. This addresses accessibility concerns since it’s an open-source platform. In today's world, artificial intelligence represents a significant breakthrough. As a result, machine learning algorithms were utilised for this project. Several machine learning models were tested to choose the most suitable and appropriate for anomaly identification and data analysis. This paper also presents the integration of a mobile application for visualising the data and offering insights into the user’s health status. This system aims to monitor a person’s health data in real time, facilitating early detection of potential health issues.
dc.description.courseMechatronical Engineeringen
dc.description.degreeBSc/BA
dc.format.extent68
dc.identifier.urihttps://hdl.handle.net/2437/397305
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectRemote Health Monitoring System
dc.subjectHealth Monitoring System with Machine Learning
dc.subjectRaspberry Pi 5 in Health Monitoring Applications
dc.subject.dspaceEngineering Sciences
dc.titleAdvanced Health Monitoring System with Mobile Application
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Advanced Health Monitoring System with Mobile Application - Hana Hesham I. Sayed.pdf
Méret:
4.6 MB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.69 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: