AUTONOMOUS NAVIGATION OF MOBILE ROBOT IN DYNAMIC ENVIRONMENTS USING DEEP REINFORCEMENT LEARNING

dc.contributor.advisorDr. PhD. Almusawi , Husam Abdulkareem
dc.contributor.authorMayorga Mayorga, Oscar Agustin
dc.contributor.departmentDE--Műszaki Kar
dc.date.accessioned2025-09-04T16:48:13Z
dc.date.available2025-09-04T16:48:13Z
dc.date.created2024-05-06
dc.description.abstractThe aim of this work is to develop an autonomous navigation algorithm based on artificial intelligence called Deep Reinforcement Learning for human-robot mobile interaction. The development of the robot has been considered in dynamic environments, which have been scanned by means of a 2D Lidar sensor, taking into account the sudden change of direction of objects. The proposed research has been exploratory and experimental, carrying out a search of the state of the art in terms of autonomous navigation and human-robot mobile interaction. Artificial intelligence has been used as the main technique, specifically the union of deep neural renders with Reinforcement Learning. This allows the robot to learn based on the reward or penalty according to the results sent by the deep neural network.
dc.description.courseMechatronical Engineeringen
dc.description.degreeMSc/MA
dc.format.extent79
dc.identifier.urihttps://hdl.handle.net/2437/397331
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectDeep reinforcement Learning, autonomous navigation, TD3, dynamic environments, Mobile Robot
dc.subject.dspaceEngineering Sciences
dc.titleAUTONOMOUS NAVIGATION OF MOBILE ROBOT IN DYNAMIC ENVIRONMENTS USING DEEP REINFORCEMENT LEARNING
dc.title.translatedMOBIL ROBOT AUTONÓM NAVIGÁCIÓJA DINAMIKUS KÖRNYEZETBEN MÉLYMEGERŐSÍTÉSI TANULÁS ALKALMAZÁSÁVAL
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
MAYORGA_MAYORGA_OSCAR_AGUSTIN.pdf
Méret:
3.97 MB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.69 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: