Myoelectric prosthesis control algorithm based on Motor Imagery recognition by a Spiking Neural Network.
| dc.contributor.advisor | Almusawi Abdulkareem, Husam | |
| dc.contributor.author | Martins Alonso, Arthur | |
| dc.contributor.department | DE--Műszaki Kar | |
| dc.date.accessioned | 2025-09-04T14:51:59Z | |
| dc.date.available | 2025-09-04T14:51:59Z | |
| dc.date.created | 2025 | |
| dc.description.abstract | Enhancing the control of myoelectric prostheses requires accurate and energy-efficient decoding of user intent. This thesis investigated the integration of Spiking Neural Networks (SNNs) for motor imagery based electroencephalography (MI-EEG) pattern recognition to improve both classification accuracy and energy efficiency for prosthetic command generation. Our proposed approach envisions an electromyographic (EMG) and MI-EEG hybrid control model, using SNNs to decode the movement intention from the MI-EEG, and the EMG providing proportional control. We implemented SNNs through ANN-to-SNN conversion, specifically evaluating lightweight deep convolutional network architectures (LENet) on a 3 class MI-EEG dataset from the same limb. Results demonstrate that the SNN model achieved a mean overall accuracy of 77.23%, on par with its LENet counterpart and competitive with state-of-the-art methods, while its theoretical energy estimations indicate that the SNN model could reduce computational energy consumption by 59.6% compared to its CNN equivalent, primarily due to sparse, event-driven processing. These findings underscore the potential of SNNs to enable accurate, low-power processing, paving the way for more natural and practical neuroprosthetic control systems. | |
| dc.description.course | Mechatronical Engineering | en |
| dc.description.degree | BSc/BA | |
| dc.format.extent | 89 | |
| dc.identifier.uri | https://hdl.handle.net/2437/397232 | |
| dc.language.iso | en | |
| dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Prosthetic control | |
| dc.subject | Motor Imagery | |
| dc.subject | Brain-Computer Interface | |
| dc.subject | Electroencephalography | |
| dc.subject | Electromyography | |
| dc.subject | Deep Learning | |
| dc.subject | Spiking Neural Networks. | |
| dc.subject.dspace | Informatics | |
| dc.subject.dspace | Engineering Sciences | |
| dc.subject.dspace | Biology::Biotechnology | |
| dc.title | Myoelectric prosthesis control algorithm based on Motor Imagery recognition by a Spiking Neural Network. |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 2 (Összesen 2)
Nincs kép
- Név:
- Thesis classification request signed.pdf
- Méret:
- 1.96 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
Nincs kép
- Név:
- Stripped - Alonso Thesis 2025 - Myoelectric prosthesis control algorithm based on Motor Imagery recognition by a Spiking Neural Network.pdf
- Méret:
- 4.22 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.69 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: