Equivalence and range of quadratic forms

Dátum
2005-12-01
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Absztrakt

If two quadratic forms are equivalent, that is, if there is a linear transformation with integer coefficients and determinant 1 or −1 which takes one form to the other, then their ranges are the same and also their determinants are the same. The result of the paper is that for positive definite binary quadratic forms the converse is also true. Namely, if two positive definite binary quadratic forms of the same determinant have the same range, then they are equivalent. The arguments are guided by geometric considerations.

Leírás
Kulcsszavak
Jogtulajdonos
Sándor Szabó
URL
Jelzet
Egyéb azonosító
Forrás
Teaching Mathematics and Computer Science, Vol. 3 No. 2 (2005) , 123-129
Támogatás