Equivalence and range of quadratic forms

dc.contributor.authorSzabó, Sándor
dc.date.accessioned2024-09-04T09:45:11Z
dc.date.available2024-09-04T09:45:11Z
dc.date.issued2005-12-01
dc.description.abstractIf two quadratic forms are equivalent, that is, if there is a linear transformation with integer coefficients and determinant 1 or −1 which takes one form to the other, then their ranges are the same and also their determinants are the same. The result of the paper is that for positive definite binary quadratic forms the converse is also true. Namely, if two positive definite binary quadratic forms of the same determinant have the same range, then they are equivalent. The arguments are guided by geometric considerations.en
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 3 No. 2 (2005) , 123-129
dc.identifier.doihttps://doi.org/10.5485/TMCS.2005.0069
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue2
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379553
dc.identifier.volume3
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14743
dc.rights.accessOpen Access
dc.rights.ownerSándor Szabó
dc.subjectbinary quadratic formsen
dc.subjectequivalence of quadratic formsen
dc.subjectgeometry of numbersen
dc.titleEquivalence and range of quadratic formsen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF
Méret:
143.52 KB
Formátum:
Adobe Portable Document Format