Relation between differentiability and monotonicity of real functions

dc.contributor.advisorKiss, Tibor
dc.contributor.authorIrin, Namira
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Matematikai Intézet
dc.date.accessioned2024-06-13T13:35:32Z
dc.date.available2024-06-13T13:35:32Z
dc.date.created2024-04-26
dc.description.abstractThis thesis explores the intricate relationship between differentiability and monotonicity in real functions, two fundamental concepts in mathematical analysis. Differentiability, indicating the presence of a derivative at every point, and monotonicity, describing a function's consistent increase or decrease within an interval, are pivotal in understanding the behavior of functions across various domains of mathematics. This research seeks to deepen the theoretical understanding of these unique mathematical behaviors by investigating the conditions under which such functions exist and characterizing their properties through analytical methods.
dc.description.courseMathematics
dc.description.degreeBSc/BA
dc.format.extent27
dc.identifier.urihttps://hdl.handle.net/2437/372719
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectDifferentiability
dc.subjectMonotonicity
dc.subjectReal Functions
dc.subjectLebesgue’s Theorem
dc.subject.dspaceMathematics
dc.titleRelation between differentiability and monotonicity of real functions
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis_v0 (1).pdf
Méret:
346.25 KB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: