Relation between differentiability and monotonicity of real functions
dc.contributor.advisor | Kiss, Tibor | |
dc.contributor.author | Irin, Namira | |
dc.contributor.department | DE--Természettudományi és Technológiai Kar--Matematikai Intézet | |
dc.date.accessioned | 2024-06-13T13:35:32Z | |
dc.date.available | 2024-06-13T13:35:32Z | |
dc.date.created | 2024-04-26 | |
dc.description.abstract | This thesis explores the intricate relationship between differentiability and monotonicity in real functions, two fundamental concepts in mathematical analysis. Differentiability, indicating the presence of a derivative at every point, and monotonicity, describing a function's consistent increase or decrease within an interval, are pivotal in understanding the behavior of functions across various domains of mathematics. This research seeks to deepen the theoretical understanding of these unique mathematical behaviors by investigating the conditions under which such functions exist and characterizing their properties through analytical methods. | |
dc.description.course | Mathematics | |
dc.description.degree | BSc/BA | |
dc.format.extent | 27 | |
dc.identifier.uri | https://hdl.handle.net/2437/372719 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Differentiability | |
dc.subject | Monotonicity | |
dc.subject | Real Functions | |
dc.subject | Lebesgue’s Theorem | |
dc.subject.dspace | Mathematics | |
dc.title | Relation between differentiability and monotonicity of real functions |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis_v0 (1).pdf
- Méret:
- 346.25 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.94 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: