Development of an AI-Driven Video Coding System for Animal Behavior Analysis

dc.contributor.advisorSzekely, Tamas
dc.contributor.advisorMiranda, Oscar
dc.contributor.authorNayef, Youns
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Biológiai és Ökológiai Intézethu_HU
dc.date.accessioned2026-01-07T09:15:22Z
dc.date.available2026-01-07T09:15:22Z
dc.date.created2025-11-28
dc.description.abstractThis thesis presents an AI system that uses YOLOv8 to automatically identify incubation and shading behaviors in the Madagascar plover. The model was trained on expert-annotated nest videos and achieved high accuracy when compared with manual observations. It worked especially well in videos with stable lighting and clear bird postures. Using the AI system also saved time, reducing annotation work by almost 30%. These results show that deep learning can help researchers study bird behavior more efficiently. With more data and additional behaviors, the system could become an even more useful tool for conservation research.
dc.description.courseBiology
dc.description.degreeMSc/MA
dc.format.extent25
dc.identifier.urihttps://hdl.handle.net/2437/401735
dc.language.isoen_US
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectAI-driven video analysis
dc.subjectYOLOv8
dc.subjectAutomated behavioral monitoring
dc.subjectMadagascar plover
dc.subjectConservation ecology
dc.subject.dspaceBiológiai tudományok
dc.titleDevelopment of an AI-Driven Video Coding System for Animal Behavior Analysis
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Youns_bashar_THESIS.pdf
Méret:
2.08 MB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
2.35 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: