Developing an artificial intelligence-based agent using reinforcement learning for turn-based fighting game

dc.contributor.advisorHarangi, Balázs
dc.contributor.authorShah, Thittinan
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2024-06-21T08:23:49Z
dc.date.available2024-06-21T08:23:49Z
dc.date.created2024
dc.description.abstractThis thesis explores the development and training of an AI-driven agent within a turn-based fighting game environment, focusing on reinforcement learning techniques. Through rigorous experimentation and analysis, the agent successfully demonstrates proficiency in strategic decision-making and competitive gameplay. Our findings highlight promising performance trends in cumulative rewards, episode lengths, and policy entropy dynamics, underscoring the effectiveness of the reinforcement learning approach. Additionally, we also acknowledge the limitations of the current approach and propose future research directions, including self-play methodologies and integration of advanced techniques like deep reinforcement learning. Overall, this thesis contributes valuable insights into the field of AI-driven gameplay and lays the foundation for further advancements in artificial intelligence.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent32
dc.identifier.urihttps://hdl.handle.net/2437/374461
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectArtificial Intelligence
dc.subjectReinforcement Learning
dc.subject.dspaceInformatics
dc.titleDeveloping an artificial intelligence-based agent using reinforcement learning for turn-based fighting game
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
749.94 KB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények