Predictive Data Analysis

dc.contributor.advisorTomán, Henrietta
dc.contributor.authorHoang, Quoc Anh
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2024-06-23T17:51:03Z
dc.date.available2024-06-23T17:51:03Z
dc.date.created2023
dc.description.abstractThis thesis is focusing on market analysis and the application of machine learning techniques to predict movie genres of a specific streaming service. The primary objective is constructing predictive classification models that can accurately forecast movie genres based on their given descriptions. These models are then evaluated using various metrics to assess their performance and understand their limitations. The ultimate aim of this study is to gain a deeper understanding of how these predictive models function, providing valuable insights for future reference and applications. Additionally, the insights gained from this study could potentially be applied to other domains within the entertainment industry.
dc.description.courseGazdaságinformatikus
dc.description.degreeBSc/BA
dc.format.extent49
dc.identifier.urihttps://hdl.handle.net/2437/374541
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectPrediction
dc.subjectData
dc.subjectMovies
dc.subject.dspaceDEENK Témalista::Informatika
dc.titlePredictive Data Analysis
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
948.22 KB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények