Predictive Data Analysis
dc.contributor.advisor | Tomán, Henrietta | |
dc.contributor.author | Hoang, Quoc Anh | |
dc.contributor.department | DE--Informatikai Kar | |
dc.date.accessioned | 2024-06-23T17:51:03Z | |
dc.date.available | 2024-06-23T17:51:03Z | |
dc.date.created | 2023 | |
dc.description.abstract | This thesis is focusing on market analysis and the application of machine learning techniques to predict movie genres of a specific streaming service. The primary objective is constructing predictive classification models that can accurately forecast movie genres based on their given descriptions. These models are then evaluated using various metrics to assess their performance and understand their limitations. The ultimate aim of this study is to gain a deeper understanding of how these predictive models function, providing valuable insights for future reference and applications. Additionally, the insights gained from this study could potentially be applied to other domains within the entertainment industry. | |
dc.description.course | Gazdaságinformatikus | |
dc.description.degree | BSc/BA | |
dc.format.extent | 49 | |
dc.identifier.uri | https://hdl.handle.net/2437/374541 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Prediction | |
dc.subject | Data | |
dc.subject | Movies | |
dc.subject.dspace | DEENK Témalista::Informatika | |
dc.title | Predictive Data Analysis |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 948.22 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.94 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: