Convergence properties of one and multidimensional trigonometric Fourier series
dc.contributor.advisor | Tamás, Gát György | |
dc.contributor.author | Allauca Guananga , Steven Gerónimo | |
dc.contributor.department | DE--Természettudományi és Technológiai Kar--Matematikai Intézet | |
dc.date.accessioned | 2025-02-03T08:19:01Z | |
dc.date.available | 2025-02-03T08:19:01Z | |
dc.date.created | 2024-05-01 | |
dc.description.abstract | In this work, first of all, we study the convergence properties of one and multidimensional trigonometric Fourier series. It begins by discussing fundamental concepts such as vec- tor spaces, function spaces, and interpolation theorems. Inspired by Fourier analysis, it explores the feasibility of extending these concepts to infinite-dimensional spaces and or- thonormal systems. The study extensively covers the convergence behavior of Fourier series in the one-dimensional case, including partial sums, Dirichlet kernels, Fourier coefficients, and convergence criteria. It also examines the concept of Fej´er means. In the multidi- mensional context, the thesis explores topics such as partial sums, norm convergence, and summability means. Throughout the thesis, we use and refer to books [1] and [2], as well as the lectures given by my supervisor in his ”Fourier series” lectures [3]. What results are not directly referred to are taken from lectures [3, 4]. No new statements or results have been formulated in the thesis. | |
dc.description.course | MS.c. Applied mathematics | |
dc.description.degree | MSc/MA | |
dc.format.extent | 56 | |
dc.identifier.uri | https://hdl.handle.net/2437/386376 | |
dc.language.iso | en | |
dc.rights.access | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
dc.subject | Fourier series | |
dc.subject | Dirichlet kernels | |
dc.subject | Fejér means | |
dc.subject | Summability means | |
dc.subject.dspace | Mathematics | |
dc.title | Convergence properties of one and multidimensional trigonometric Fourier series |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- Thesis_UniDeb_Steven_A.pdf
- Méret:
- 479.12 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.94 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: