Charakteristische Dreieckpunkte in der projektiv-erweiterten hyperbolischen Ebene

dc.contributor.author, Ana
dc.contributor.author, Ivanka
dc.date.accessioned2024-09-04T09:45:42Z
dc.date.available2024-09-04T09:45:42Z
dc.date.issued2007-12-01
dc.description.abstractSome basic planimetric constructions regarding segments, angles and triangles are shown in the Cayley-Klein model of the hyperbolic plane. Relationship with the situation in the Euclidean plane is given. H-triangles are classified considering the location of their vertices and sides with respect to the absolute. There are 28 types of triangles. It is shown that there exist 12 pairs of dual triangles, while 4 types of triangles are dual to themselves. For every type of triangle the existence and number of the characteristic points are determined. Few examples of triangles with construction of their characteristic points, incircles and circumcircles are given.de
dc.formatapplication/pdf
dc.identifier.citationTeaching Mathematics and Computer Science, Vol. 5 No. 2 (2007) , 299-315
dc.identifier.doihttps://doi.org/10.5485/TMCS.2007.0142
dc.identifier.eissn2676-8364
dc.identifier.issn1589-7389
dc.identifier.issue2
dc.identifier.jatitleTeach. Math. Comp. Sci.
dc.identifier.jtitleTeaching Mathematics and Computer Science
dc.identifier.urihttps://hdl.handle.net/2437/379610
dc.identifier.volume5
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/tmcs/article/view/14800
dc.rights.accessOpen Access
dc.rights.ownerAna Sliepčević and Ivanka Babić
dc.subjectCayley-Klein model of the hyperbolic planede
dc.subjectclassification of H-trianglesde
dc.subjectdual trianglesde
dc.subjectcharacteristic points of the trianglede
dc.titleCharakteristische Dreieckpunkte in der projektiv-erweiterten hyperbolischen Ebeneen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
PDF (German)
Méret:
506.61 KB
Formátum:
Adobe Portable Document Format