Real time object tracking with Deep Learning

dc.contributor.advisorSütő, József
dc.contributor.authorBouhachem, Mouna
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2023-05-02T11:20:35Z
dc.date.available2023-05-02T11:20:35Z
dc.date.created2023-05-01
dc.description.abstractThis thesis aims to study the use of deep learning, specifically the YOLOv5 (You Only Look Once version 5) model for object detection, in conjunction with seven OpenCV (Open Source Computer Vision Library) object tracking algorithms, and to compare their effectiveness using MOTP and MOTA performance evaluation metrics. A vehicle tracking program was developed as the testing ground for the evaluation of the different tracking algorithms. The thesis includes a step-by-step guide on how to create the development environment and explains the most important parts of the program. The results obtained from the execution of the program are then shown and discussed to determine how well the algorithms performed and which ones were the most effective in this scenario.
dc.description.correctorN.I.
dc.description.courseComputer Science Engineering
dc.description.degreeBSc/BA
dc.format.extent44
dc.identifier.urihttps://hdl.handle.net/2437/351437
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjecttracking
dc.subjectvehicle
dc.subjectdeep learning
dc.subjectcomputer vision
dc.subjectdetection
dc.subject.dspaceDEENK Témalista::Informatika
dc.titleReal time object tracking with Deep Learning
Fájlok
Gyűjtemények