Enhancing the Web Streaming Experience

dc.contributor.advisorGodó, Zoltán Attila
dc.contributor.authorMahfoudh, Skander
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T20:19:17Z
dc.date.available2025-06-26T20:19:17Z
dc.date.created2025
dc.description.abstractThis thesis focuses on building innovative features that can enhance user experience on today's streaming platforms. Three core functionalities are proposed: a location-based content promotion feature that highlights local films, a synchronized viewing option (watch-party) for a real-time shared streaming experience and a personalized recommendation system based on movie poster analysis adopting a machine learning technique. The chapters delve into the need behind these features and showcases the design and development process using modern web technologies and tools, including OpenAI's CLIP for visual similarity: since the recommendation system goes beyond the meta-data by assessing the visual appeal of posters since it is what the viewer notices first. All of the developed features demonstrate the technical feasibility and how users can be the center of innovations in our digital era. The project is subject to continuous improvement and expansion.
dc.description.courseProgramtervező informatikus
dc.description.degreeMSc/MA
dc.format.extent45
dc.identifier.urihttps://hdl.handle.net/2437/394733
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectweb application
dc.subjectmovie streaming
dc.subjectReactJS
dc.subjectMachine Learning
dc.subject.dspaceInformatics::Information Technology
dc.titleEnhancing the Web Streaming Experience
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
2.13 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények