Generative Adversarial Networks for Synthetic Cell Imaging

dc.contributor.advisorAl-Hamadani, Mokhaled Noori Abd Allah
dc.contributor.authorHammoud, Haidar
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-30T14:13:56Z
dc.date.available2025-06-30T14:13:56Z
dc.date.created2025-04-16
dc.description.abstractGenerative Adversarial Networks for Synthetic Cell Imaging discusses the topic of Generative Adversarial Networks (GAN) used for cell image generation. The thesis proposes a solution for the need of cell image data for medical research. With the use of a Deep Convolutional GAN (DCGAN) trained on a dataset of yeast cell images, I build a GAN model capable of producing synthetic data of cell images under a microscope. GANs use Deep Learning (DL) approaches and Convolutional Neural Networks (CNNs) to generate images of cells. The thesis is for my studies in Computer Science BSc, at the University of Debrecen.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent37
dc.identifier.urihttps://hdl.handle.net/2437/395116
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectArtificial Intelligence
dc.subjectAI
dc.subjectMachine Learning
dc.subjectDeep Learning
dc.subjectNeural Network
dc.subjectGAN
dc.subjectGenerative Adversarial Network
dc.subjectImage Generation
dc.subject.dspaceInformatics::Computer Graphics
dc.subject.dspaceInformatics::Computer Science
dc.titleGenerative Adversarial Networks for Synthetic Cell Imaging
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
1.31 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények