Developing and designing AI agents for application in fps games

dc.contributor.advisorHarangi, Balázs
dc.contributor.authorXu, Jiaxuan
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T21:00:34Z
dc.date.available2025-06-26T21:00:34Z
dc.date.created2025-04-15
dc.description.abstractThis study focuses on developing and designing AI agents for FPS games using the Unity engine and the ML-Agents toolkit. The Proximal Policy Optimization (PPO) algorithm combined with a staged curriculum learning strategy was used to train the agent. Experimental results show that curriculum learning significantly improved the agent’s navigation, combat abilities, and training efficiency. Through parameter tuning and reward optimization, the agent achieved higher cumulative rewards and better training stability. The findings demonstrate the feasibility of applying deep reinforcement learning to FPS games and provide a foundation for future research in complex environment modeling and adaptive game AI.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent44
dc.identifier.urihttps://hdl.handle.net/2437/394789
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectArtificial Intelligence
dc.subjectGame
dc.subject.dspaceInformatics
dc.titleDeveloping and designing AI agents for application in fps games
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Thesis.pdf
Méret:
1.53 MB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények