Interpolation of Functions

dc.contributor.advisorNagy, Gergő
dc.contributor.authorBodaubyek, Aimuldir
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Matematikai Intézet
dc.date.accessioned2024-06-13T13:35:07Z
dc.date.available2024-06-13T13:35:07Z
dc.date.created2024-04-25
dc.description.abstractThis thesis material shows how to estimate the values between given data points using polynomial interpolation, a key technique used in many scientific fields. We focus on the theoretical and practical aspects of polynomial interpolation, specifically Lagrange and Newton forms which are quite commonly used methods. By examining how these methods solve interpolation problems and minimize errors, we learned which method works best under different conditions. The results show that choosing the right interpolation method is crucial for accuracy, depending on the data's nature and the function being approximated. Overall, this study enhances our understanding of interpolation methods and their practical applications in real-world scenarios.
dc.description.courseMathematics
dc.description.degreeBSc/BA
dc.format.extent31
dc.identifier.urihttps://hdl.handle.net/2437/372717
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectInterpolations
dc.subject.dspaceMathematics
dc.titleInterpolation of Functions
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis_v1.pdf
Méret:
310.71 KB
Formátum:
Adobe Portable Document Format
Leírás:
Thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: