Automating OCT Diagnostics With Machine Learning

dc.contributor.advisorHarangi, Balázs
dc.contributor.authorAl-Abdalla, Hazim Talab Rashid Rushdi
dc.contributor.departmentDE--Informatikai Kar
dc.date.accessioned2025-06-26T21:00:13Z
dc.date.available2025-06-26T21:00:13Z
dc.date.created2025-04-14
dc.description.abstractThis thesis focuses on classifying Age Related Macular Degeneration (AMD) into wet (Exudative) and dry (Non Exudative) by analyzing 3D OCT scans with Machine learning. Due to the sparse size of the dataset, which contains fewer than 100 samples, a two part design was proposed and applied in this thesis. The two part solution consists of an autoencoder for feature extraction and dimension reduction, and a classifier for the final prediction. This approach aids in overcoming the limited size of the dataset while capturing important features from the volumetric OCT scans. This projects shows a complete pipeline for medical imaging processing using machine learning, from data cleaning and preprocessing, to model design, to training and evaluation.
dc.description.courseProgramtervező informatikus
dc.description.degreeBSc/BA
dc.format.extent48
dc.identifier.urihttps://hdl.handle.net/2437/394788
dc.language.isoen
dc.rights.infoHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectArtificial Intelligence
dc.subjectMachine Learning
dc.subjectMedical Image processing
dc.subjectAI
dc.subjectOCT
dc.subjectAge Related Macular Degeneration
dc.subject.dspaceInformatics
dc.titleAutomating OCT Diagnostics With Machine Learning
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
thesis.pdf
Méret:
1.94 MB
Formátum:
Adobe Portable Document Format
Leírás:
thesis
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.95 KB
Formátum:
Item-specific license agreed upon to submission
Leírás:
Gyűjtemények