Machine Learning-Based Friend Recommendation System in a Social Networking System

dc.contributor.advisorKamrás, Ádám
dc.contributor.authorUmmar, Musa
dc.contributor.departmentDE--Műszaki Kar
dc.date.accessioned2025-09-04T16:44:28Z
dc.date.available2025-09-04T16:44:28Z
dc.date.created2024-06-07
dc.description.abstractThis work employs efficient and reliable machine learning algorithms to not only simulate and analyze a social network but also recommend potential friends for users based on their friends' connections within the social network and based on their professions. To achieve its objectives and ensure successful recommendations, the program utilizes object-oriented Python programming. This multifaceted approach guarantees that recommendations are tailored to individual professions and connections existing within the network. The system leverages a hybrid approach that combines two techniques: collaborative filtering and content-based filtering. This approach extends beyond traditional methods by analyzing not only user connections but also user professions.
dc.description.courseMechatronical Engineeringen
dc.description.degreeMSc/MA
dc.format.extent62
dc.identifier.urihttps://hdl.handle.net/2437/397326
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjectFriend Recommendation System
dc.subjectMachine Learning
dc.subjectSocial Networks
dc.subject.dspaceEngineering Sciences
dc.titleMachine Learning-Based Friend Recommendation System in a Social Networking System
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
Ummar Musa_Thesis_DEA Upload.pdf
Méret:
1.96 MB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.69 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: