Szerző szerinti böngészés "Bisztray, Gy."
Megjelenítve 1 - 9 (Összesen 9)
Találat egy oldalon
Rendezési lehetőségek
Tétel Szabadon hozzáférhető Attempting Regeneration from Cultured Cotyledons and Plant Regeneration from Cotyledonary Nodes in Common Bean (Phaseolus vulgaris L.)(1999-05-24) Eissa Ahmed, E.; Bisztray, Gy.; Velich, I.Dry seeds from two cultivars of common bean (Phaseolus vulgaris L.) were germinated on sterile cotton and sterile deionized distilled water. Cotyledonary node tissue of seedlings were cultured on Murashige and Skoog(MS)-based media supplemented with different combination of N 6 -benzyl-aminopurine (BAP) and indole-3-acetic acid (IAA), and benzyladenine (BA) and a-naphthaleneacetic acid (NAA). The results revealed that the regeneration percent and the average number of buds and shoots per explant were influenced by the type of explants and exogeneously added hormones. Multiple shoot induction on dry bean cotyledonary node that contain 4-5 mm from cotyledons and hypocotyl on a medium containing full concentration of MS inorganic salts supplemented with 0.5mg/1 BA and 0.1mg/1 NAA was feasible and the method can be applied in transformation experiments.Tétel Szabadon hozzáférhető Bean tissue culture and genetic transformation with Agrobacterium(2000-02-23) Eissa Ahmed, E.; Bisztray, Gy.; Velich, I.In this paper we report the establishment methods of a rapidly growing callus culture of Phaseolus vulgaris bean as well as the conditions required for a high level of transient gene expression using Agrobacterium-mediated transformation. A vector is containing both the lindan-resistance gene as a selectable marker, and GUS gene as a screenable marker. By using hypocotyl explant and vertical culture on B5 medium supplemented with 1 mg/1 kinetin- and 2,4-D 2 mg/1 and subcultured every 3-4 weeks, we can recommend to get a good and much callus from bean. This will help in introducing foreign DNA into callus cells. One strain of Agrobacterium carrying plasmid as vector for introducing foreign DNA into plant cells was used. At different concentrations of lindan; 3, 4 and 4.5 mg/I, the transformed Maxidor callus survived and grew over a period of 6 month and subcultured every 3-4 weeks, but the control callus died. Callus were assayed for GUS activity to confirm the expression of the GUS gene using the histochemical assay test. The GUS gene was also correctly expressed in callus cultures grown on 4mg/I lindan-selected medium, the typical blue colour in the histochemical assay using the X-gluc as substrate. But the control, non-transformed callus was not able to grow in the presence of lindan, neither showed a positive reaction in the in vitro assays.Tétel Szabadon hozzáférhető Callus induction on standard type Cymbidium cultivars(2000-08-23) Jánvári, L.; Bisztray, Gy.; Füzesi, T.; Velich, I.Tissue cultured Cymbidium PLBs (protocormlike body) were used as starting material to induce embryogenic callus which could serve as objects of genetic transformation. We obtained callus using two methods. The first method was culturing the PLB segments for one month in liquid MS medium in the presence of 0.5 mg/1 benzyladenine and 0.05 mg/1 naphtylacetic acid followed by cultivation on the same composition solid medium with 0.5 g/l activated charcoal for an additional month. Callus formation was observed on 30% of the explants. The second way was to propagate the PLB segments on solid MS medium supplemented with 1 mg/1 thidiazuron. In these cultures we also observed callus formation on 20% of the explants.Tétel Szabadon hozzáférhető Co-transformation of bean callus using high-velocity microprojectiles- mediated DNA transfer(2001-03-21) Eissa Ahmed, E.; Bisztray, Gy.; Velich, I.We have found that 50 mg/I kanamycin and 0.8 Mo1/1 mannitol concentration was sufficient to kill the control callus of bean (Phaseolus vulgaris L.) and differentiate transgenic from the non-transgenic cells. The GeneBooster particle delivery system was used for the bombardment of bean callus. The kanamycin resistance gene was used as a selectable marker. The test was made by transferring the healthy white callus, subcultured for three months on selective and non-selective medium. After selection on kanamycin containing media, several kanamycin resistant calli had been obtained, survived and grew. After selection on mannitol containing media no drought resistant calli had been obtained. Resistance of the selected calli were verified by their ability to grow repeatedly on selective medium containing 150 mg/I kanamycin. Selective pressure was maintained over a period of 8 months.Tétel Szabadon hozzáférhető The Effects of Some Parameters on Agrobacterium-Mediated Transformation in Muskmelon(1999-09-13) Qiu, Z.; Bársony, Cs.; Bisztray, Gy.; Velich, I.Some parameters involved in Agrobacterium-mediated transformation in muskmelon Hales best (HBS) were studied. Cotyledon explants excised from 3.5-day-old seedlings were co-cultivated with Agrobacterium tumefaciens harbouring binary vectors which contained GUS and BAR genes. After co-cultivation on a low pH medium, explants were transferred to selective medium, with higher pH, containing Claforan and Finale. The medium was changed every two weeks till shoots were induced. All shoots rooted on MS medium supplemented with 0.3 mg/L IBA. These parameters combined as a whole led to successful transformation. The expression of the introduced gene construct was confirmed by GUS staining of shoot segments.Tétel Szabadon hozzáférhető High-velocity microprojectile mediated DNA delivery into Phaseolus vulgaris callus cells(2000-08-23) Eissa Ahmed, E.; Bisztray, Gy.; Velich, I.We report the method for the establishment of rapidly growing callus cultures of Phaseolus vulgaris and the conditions required for efficient transformation using high velocity microprojectiles and high level of transient gene expression. Using hypocotyl explant and vertical culture on B5 medium with lmg/1 kinetin and 2 mg/1 2,4-D, we can recommend to get a rapidly growing callus from bean which is a good starting material to introduce foreign DNA into bean cells. The GeneBooster particle delivery system was used for the bombardment of bean callus and the Hgm resistance gene (Hgmr) was used as a selectable marker gene. 25mg/I hygromycin (Hgm) concentration was sufficient to kill the control callus. We used the standard physical factors, the appropriate pressure of N2 gas for the bombardment of the callus tissue, the shooting distance and the size of tungsten particles used as microprojectiles. Selective and nonselective tests were made by transferring the healthy green and white calluses, subcultured for 4 months on selective and nonselective medium. Several Hgm resistant calli had been obtained. Selective pressure was maintained over a period of 10 months.Tétel Szabadon hozzáférhető In vitro regeneration from cotyledons of watermelon(2000-08-23) Zarka, V.; Velich, L.; Bisztray, Gy.Cotyledonary segments of five different genotypes of watermelon were used to induce organogenesis. Five different hormone combinations were applied to enhance the induction of shoot formation on the surface of the segments. The phases of organogenesis were followed with light and scanning electron microscope. Shoots were obtained after four weeks, then the shoots were transferred to hormone free medium for root induction. This method of regeneration can be applied in transformation experiments. GUS histochemical assay was made to check the expected success of using Agrobacterium for the transformation.Tétel Szabadon hozzáférhető Shoot induction and plant regeneration from cotyledon segments of the muskmelon variety "hógolyó"(1999-05-24) Bársony, Cs.; Bisztray, Gy.; Bába, E.; Velich, E.Cotyledonary segments of the casaba type muskmelon variety "Hógolyó" were used to induce organogenesis. Fifty different hormone combinations were applied to enhance the induction of shoot formation on the edge of the segments. The phases of organogenesis were followed with light- and scanning electron microscope. Shoot induction was achieved with high frequency. The shoots were transferred to hormone free media for root induction. The rooted plantlets were planted out to soil. NAA was feasible and the method can be applied in transformation experiments.Tétel Szabadon hozzáférhető The use of SSR markers in family Rosaceae(2002-08-14) Pedryc, A.; Ruthner, Sz.; Bisztray, Gy.The identification of plant species and study of their genetic relatedness is an important object of plant genetics. The Rosaceae family contains a lot of economically important fruit, ornamental, and wild plant species. The microsatellite markers have been proven to be an efficient tool for description of the genetic relatedness among varieties and species. Their evolutionary conserved regions enable them to differentiate among various accessions. This article intends to show proceeded identification and characterization projects on Rosaceae species by using SSR markers. The article presents sources of already published primer sequences. The use of already published primers can highly reduce the cost and duration of this kind of researches.