International Review of Applied Sciences and Engineering

Állandó link (URI) ehhez a gyűjteményhez

International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.

Founder: Debreceni Egyetem

Publisher: Akadémiai Kiadó

URL: https://akjournals.com/view/journals/1848/1848-overview.xml

ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Böngészés

legfrissebb feltöltések

Megjelenítve 1 - 20 (Összesen 191)
  • TételSzabadon hozzáférhető
    Flexural behavior of external reinforced concrete beams by using waste aggregate concrete
    (Akadémiai Kiadó, 2024-01-22) Hiswa, Ashraf A. M. R.; Shubber, Mustafa Salman; Mezher, Thaer Matlab; nem
    The influence of utilizing waste concrete aggregates on the flexural behavior of external reinforced concrete beams has been studied. Seven mixtures were prepared for this investigation where the concrete mixtures had different waste concrete percentages and admixtures. Also, seven beams were modeled by Ansys program and the properties of the seven mixtures have been used in the models to study their effects. It was found that using waste concrete aggregates has decreased the load bearing capacity and concrete ductility. It was found that the beam bearing capacity was decreased by 10.7% when using only waste concrete. Using admixtures have enhanced the concrete properties where the load capacity of beams has been increased by 39% when using silica fume and superplasticizer and the load capacity has increased by 44.6% when multi-admixtures have been used. Besides, it was found that using additives has enhanced the beam ductility significantly.
  • TételSzabadon hozzáférhető
    Study of relationship between cost overrun and material waste in building construction projects
    (Akadémiai Kiadó, 2024-01-22) Mahamid, Ibrahim; nem
    This paper aims to recognize the effect of material waste on cost increase in Palestinian construction projects. The study used questionnaire survey to achieve its objectives. The target population of the study are constructors and consultants involved in construction projects. The study also predicts the effect of cost overrun on material waste in some construction activities, namely: ceramic and brick works. The collected data were analyzed using statistical analyses. The study has established that among the various factors that affect cost overrun, experience in the line of work, conflicts among project participants, payments delay, and political situation are the key factors. While the analysis revealed that the main material waste factors are: poor site management, using untrained labors, rework due to workers' mistakes, selecting the lowest bidder contractor/subcontractor, and frequent change orders. Data from 55 building projects constructed in the West Bank between 2015 and 2020 were collected to test the relation between material waste and cost increase. Two mathematical models were developed: Model (l) links cost increase and waste in ceramic works. It indicates that if waste increases by 1%, the cost will increase by 1.07%. Model (2) links between cost increase and material waste in brick works. It tells that if waste increases by 1%, cost will increase by 1.25%. R square of value >0.7, for both models, indicates a strong linear relation between cost increase and material waste. This is the first study that predicts the effect of material waste on cost increase in Palestinian construction sector. The study encourages different parties related to construction projects to manage factors of cost overrun and material waste to enhance the sector of construction.
  • TételSzabadon hozzáférhető
    Identification and categorization of hazards in the mining industry: A systematic review of the literature
    (Akadémiai Kiadó, 2024-01-22) Seyedeh , Arezoo Baghaei Naeini; Adel, Badri; nem
    Control of OHS risks in the mining industry has been attracting increasing attention in recent years. Because of their great diversity in a complex system, hazards can be difficult to identify and classify, especially when system components interact. Risk cannot be managed successfully without comprehensive investigation of all its aspects. A coherent and integrated classification for identifying and categorizing all hazards is currently lacking in mining. We propose an integrated system classification of OHS hazards in mining based on our review of 44 studies retrieved using PRISMA. Considering Canadian and international standards, regulations and conventions, new hazard categories are proposed and hazard prevention is discussed from 12 perspectives: physical, chemical, biological, ergonomic, accident and psychosocial risks, as well as policy, legislation, management, design, geography, and uncertainty, with reference to each of the four phases of a typical mine life cycle, the hazards were shown in a portrait. This paper provides suitable categories based on rational data for creating a portrait in order to OHS hazards prevention in life cycle activity in mine.
  • TételSzabadon hozzáférhető
    Assessment of mechanical and durability performance of silica fume and metakaolin as cementitious materials in high-performance concrete
    (Akadémiai Kiadó, 2024-01-22) Sankar, B.; Ramadoss, P.; nem
    The present study aims to determine the effects of blending cementitious materials on the mechanical and durability properties of high-performance concrete (HPC). Densified silica fume and fine-grounded metakaolin are used as supplementary cementitious materials (SCMs). A total of 16 mixes containing both binary and ternary blending of SCMs were chosen for w/b ratios of 0.4 and 0.3 respectively. The hardened properties tested for the HPC mixes were compressive strength at 7, 28, and 90 days, flexural strength at 28 days, and modulus of elasticity at 28 days. Maximum strength gains up to 15%, 38%, and 23% for compression, flexure, and elastic modulus were observed in ternary mixes compared to binary mixes. Stress-strain behaviour of ternary mixes indicates increased tolerance of stress for the least amount of strain in the specimens. Based on the experimental results, empirical relations were developed and checked with the existing codes and by earlier researchers. The durability properties tested for HPC were water absorption at 28 days, acid attack, and sulphate attack at 28, 56, and 90 days. Ternary mixes improved the pore structure of HPC, resulting in a 56% reduction in water absorption and a 34% reduction in compressive strength loss due to immersion in 5% H2SO4 at 90 days. The findings of the study endorse that ternary blending of SF and MK can improve the engineering properties of HPC, and a mix containing SF 10% and MK 10% is recommended for the best results.
  • TételSzabadon hozzáférhető
    Development of a 2-dimensional thermal calculation method to estimate silicone oil's temperature distribution in viscous torsional vibration dampers
    (Akadémiai Kiadó, 2024-01-22) Venczel, M.; Veress, Á.; Perdey, Z.; nem
    High-performance internal combustion engines are subject to severe torsional vibrations which result from uneven gas and inertial loads. Fatigue damage occurs if the frequency of these undesired oscillations matches the resonance frequency of the crankshaft and the driven engine elements. This phenomenon can be avoided by the application of visco-dampers whose working fluid is high-viscosity silicone oil. Since silicone oil is exposed to a significant amount of heat load during operation, it is essential to calculate the temperature distribution in a relatively easy, quick, and cost-efficient way for lifetime estimation purposes. The aim of this article is to develop a reliable, fast, and accurate finite difference-based numerical method for steady-state thermal calculations for arbitrary damper sections. The developed MATLAB code calculates the temperature field of the damping fluid together with all components in a radial cross-section at given operational conditions. The accuracy of the developed thermal calculation method has been tested in a 3-dimensional – 2-dimensional two-step verification process by finite element and finite volume-based advanced engineering software in ANSYS environment. Furthermore, the original Iwamoto equation available in the literature has been updated to provide more accurate surface temperature results based on the simulations' outcome gained by the finite volume method.
  • TételSzabadon hozzáférhető
    Towards better understanding of the complex industrial systems: Case of production systems
    (Akadémiai Kiadó, 2023-10-10) Jemai, Hajer; Badri, Adel; Fredj, Nabil Ben; nem
    Growth of the world population and the globalization of trade are the origins of the fourth industrial revolution, called “Industry 4.0”. What engineers call systems are becoming more and more complex as businesses strive to stay competitive and meet ever-changing demand. While automation and information digitization and transmission technologies are increasingly becoming major assets in modern industries, the changes they bring are having an impact on the management of occupational health and safety. The aim of this article is to provide an overview of the progress achieved in the understanding of complex systems and to test some of the published theory by comparing it to a case study. The major scientific databases were searched to retrieve the literature on complexity, and a large company in the steel products business was queried to determine how its complexity as perceived by its managerial staff compares to the theory of complex systems. Our main conclusion is that, based on the data gathered in the case study, the perception that the managerial staff has of the company corresponds closely to the current definition of complex systems as proposed by researchers. However, it remains to be determined whether this correspondence holds over the range of business sizes.
  • TételSzabadon hozzáférhető
    Evolutionary control system of asymmetric quadcopter
    (Akadémiai Kiadó, 2023-10-10) Albedran, Hazim; Jármai, Károly; nem
    Drones, specifically quadcopters, have increased in importance during the last years due to their wide range of applications, from civil applications to military employment. One of the most important issues in quadcopters is the efficient control system. While many researchers have dealt with building control systems for symmetric quadcopters, this work presents an efficient control system for asymmetric quadcopters using evolutionary computations. The problem is well-defined throughout the paper, and the methodology is explained in detail in the respective sections. A genetic algorithm is used to tune the weighting matrix of the control system after formulating the control system as an optimization problem. The genetic algorithm was fast and active to increase the performance of the proposed system.
  • TételSzabadon hozzáférhető
    Li-Fi technology based long range free-space communication data transmit system evaluation
    (Akadémiai Kiadó, 2023-10-10) Faruq, Omar; Rahman, Kazi Rubaiyat Shahriar; Jahan, Nusrat; Rokoni, Sakib; Rabeya, Mosa; nem
    The most flexible and reliable technological system is Wi-Fi, which is made possible by a wireless connection that transmits data using radio frequencies. Wi-Fi networks, however, encounter numerous issues related to power supply, availability, efficiency, and security as a result of the various access points. While relational waves describe the medical device, Wi-Fi radios produce radio waves that are very dangerous for patients. This document offers line-of-sight communication between the transmitter and receiver using LED technology. Li-Fi technology is a method that transmits audio data using LED light, which is faster and more efficient than Wi-Fi. Since it is practically ubiquitous, light can be used for communication as well. A cutting-edge technology called optical communication includes a subset called light fidelity. By sending out visible light, the Li-Fi device enables wireless intranet communication. This paper is an in-depth study and analysis of Light Fidelity (Li-Fi), a novel technology that transmits data at high speeds over a wide spectrum by using light as a medium of transmission. The research fields that are pertinent to Li-Fi networks are thoroughly analyzed and categorized in this paper: high speed data transmission, receiving, sharing, broadcasting through light in free space optical communication system by Li-Fi technology. In this paper, we followed some methods and developed a unique method to develop this study: VLC, OOK, a Lambertian discharge mechanism, LOS, NLOS, or a CMOS optical receiver. The proposed model tested transmits and receives audio, video, and other data, which is very high-rated and near the 2 GB/s range.
  • TételSzabadon hozzáférhető
    Packaging waste and recycle in EU
    (Akadémiai Kiadó, 2023-10-10) Vuk, Aliz; Szűcs, István; Bauerné Gáthy, Andrea; igen
    Nowadays, the use of plastic is very widespread, especially in packaging materials. Most packaging materials are made from fossil-based polymers, which contribute significantly to greenhouse gas emissions. The unprecedented leakage of single-use plastic waste into the environment is a major problem, with negative impacts on both ecosystems and human health. In this study we examine the development of packaging waste and recycled packaging in the European Union over a period of more than 20 years, highlighting changes in the regulatory context; assess the achievements of Hungary so far and forecast the expected developing of packaging volumes and recycling rates; and consider recycling and waste reduction options, including alternative sustainable packaging options. Our forecast based on the evidence shows that Hungary (47.62%), Germany (61.46%), Malta (26.27%), Romania (58.64%) and Croatia (49.41%) are not expected to reach the target set (65% by 2025) in EU legislation. Out of the 27 countries surveyed, 6 (Belgium 88.2%, the Netherlands 87.81%, Luxembourg 76.96%, the Czech Republic 77.79%, Finland 78.75% and Denmark 83.7%) exceeded the expectations, so we show their waste management and waste recycling good practice, as they can serve as good examples for Hungary and other countries.
  • TételSzabadon hozzáférhető
    Properties of self-compacting concrete modified with m-sand and spent foundry slag
    (Akadémiai Kiadó, 2023-10-10) Udayasree, B.; Kumar, G. Shravan; nem
    Due to significant industrialization, many countries have adopted the practice of industrial symbiosis, which involves utilizing the waste produced by one industry as a resource for another industry. The utilization of spent foundry sand (SFS), which is derived from the metal casting industry, poses a significant risk to both the environment and living organisms as a result of the existence of inorganic and organic substances. Nevertheless, this waste material can serve as a valuable resource for the construction sector. The utilization of SFS is significantly restricted due to insufficient comprehension of its concrete performance, despite its extensive range of applications. It is imperative to comprehend the behavior of spent foundry sand in concrete, particularly in relation to achieving a structure that is both strength-efficient and durable. The current study explores the usability of M-sand and spent foundry sand in self-compacting concrete. Reference concrete was produced by replacing river sand with 100% M-sand. M-sand was substituted with spent foundry sand in ratios ranging from 0 to 30%. Compared to the reference mix, SCC's mechanical and durability properties with 20% SFS were better. In comparison to the reference mix, SCC containing 20% SFS had higher mechanical and durability characteristics at 3, 7, 28 days, and 28 days, respectively. With 20% SFS, replacement showed better mechanical properties at all curing ages and better durability performance at 28 days of the curing period.
  • TételSzabadon hozzáférhető
    Design of adjustable prosthetic pylon for children amputees: Numerical analysis case study
    (Akadémiai Kiadó, 2023-10-10) Kadhim, Fahad Mohanad; Al-Kkow, Rowaid Nabeel Yousuf; Jweeg, Muhsin Jaber; Tahir, Muhammad Safa Al-Din; nem
    The pylon is an essential part of lower limb prosthetics. It is usually made of titanium, aluminum, and steel. However, it is expensive and difficult to be available in developing countries, especially for children who suffer from amputation. Moreover, they constantly need new pylon pieces during close periods due to the growth and increase in the child's length.
  • TételSzabadon hozzáférhető
    Extracts of leaf as green substitute to zinc compound additives in alkyd primer for corrosion inhibition of mild steel
    (Akadémiai Kiadó, 2023-05-09) Sodiya, E.F.; Dawodu , F.A.; nem
    Application of leaf extracts in alkyd extract primer (AEP) to inhibit corrosion of mild steel was compared with performance of alkyd conventional primer (ACP) containing zinc phosphate and zinc chromate as inhibitors. The investigations were carried out through Gasometric technique in 5 °C steps of temperature increase from 25 to 50 °C in 1.0 M HCl as corrodent. The AEP of 34.24 percent actives compared with ACP of 56.57 percent actives gave the same inhibition efficiencies of 76.5%. Extract primer of lower percent active compared with conventional primer were cost effective and more potent than conventional primer.
  • TételSzabadon hozzáférhető
    Hybrid bidirectional multilevel inverter structures for induction motor drive
    (Akadémiai Kiadó, 2023-05-09) Santhi, R.; Srinivasan, A.; igen
    Multilevel inverters performance enhancement is a major topic, which has attracted the attention of most of the researchers, to evolve with newer topologies and modulation strategies. In this manuscript, two novel hybrid bidirectional multilevel inverter structures, which are suitable for bidirectional loads, are proposed. An enhancement in the voltage levels and reduction of the component count are achieved for these newly introduced structures. Modular expansion and series cascading are suggested systems for extension of the voltage levels. The prime requirement in most of the industrial drives is a controlled output. VSI fed induction motor drive satisfies this requirement. The Multicarrier PWM technique has been applied to the basic bidirectional seven level models and nine level model and its performance with induction motor as load has been analyzed for various modulation indices. The simulated results of the proposed structures are verified using MATLAB/SIMULINK platform. The characteristics such as stator current, rotor current speed and torque plots achieved as above model affirm that its performance is good. By then, the tracking time of the proposed work during reference speed change, load change and constant reference change is 0.185, 1.094 and 1.5 s. The tracking time of the VSI during reference speed change, load change and constant reference change is 0.5 s, 3.8 and 3.5 s. The tracking time of the MLI during reference speed change, load change and constant reference change is 0.2 s, 1.8 and 2 s.
  • TételSzabadon hozzáférhető
    Solar panels problem after end-of-life and waste management (SWOT analysis for the global directives of PV's waste management)
    (Akadémiai Kiadó, 2023-05-09) Al-Aqqad , Ali Omar Ghaleb; Menyhart , Jozsef; igen
    Photovoltaic energy is a well-known term nowadays, and with the continuous increase in PV demand, it has become necessary to consider the other sides that may affect the success of it, which is considered one of the real effects on the environment. The PV waste has started to create a large issue with the absence of administrative procedures in many countries. Despite the estimated life of photovoltaic panels being between 20 and 30 years, many units have already started to stop working. However, research indicates the total cost of new materials to manufacture a PV panel is around USD 90 per square meter, compared to USD 13.62 for the costs of recycling a PV module. The regulations disclosed that the problem of EoL for PV modules and their management is still not considered an issue in many countries. Therefore, SWOT analysis was used to evaluate the EoL management of waste PV modules in three regions in Washington, California, and the European Union's WEEE Directive. This study presents recommendations to strengthen regulations to manage the problems of the EoL waste, and open the way for countries and the private sector to realize the responsibility that may affect the environment.
  • TételSzabadon hozzáférhető
    A statistics-based review on island detection methods in microgrids: Overall investigation and state-of-the-art
    (Akadémiai Kiadó, 2023-05-09) Amin, Damanjani; Mohamad , Hosseini Abardeh; Azita , Azarfar; Mehrdad, Hojjat; nem
    In this paper, a comprehensive statistics-based review of islanding detection methods (IDMs) in microgrids (MGs) is presented. Islanding detection is the situation of isolating the MG from the main grid whether programmed as a result of load managing purposes or un-programmed due to the occurrence of faults. Islanding detection is a vital issue in MG's analyses due to the prevention of subsequent protection problems in the power system. In other words, when the MG's operation mode changes, the current passing through the protective devices changes subsequently and the protection system should be able to adapt the new settings to the protective devices. So, IDMs are vital for electrical engineers to overcome the abovementioned protection issue. This review paper surveys the existing literature in IDMs by concentration on total publications, type of publications (journal, conference paper, or book), five authors with the highest number of publications (including the affiliations), and five most published sources. Also, the five most cited publications and state-of-the-art IDMs are investigated in detail, utilizing some known and novel categorizations. This paper will be useful for the MG's researchers to know the most desirable IDMs, especially in recent years, and provides an insightful overview for future studies.
  • TételSzabadon hozzáférhető
    Simulation aided design of a high efficient GaSb based single-junction solar cell
    (Akadémiai Kiadó, 2023-05-09) Kharchich , Fatima Zahra; Khamlichi, Abdellatif; nem
    Owing to their elevated absorption coefficient, superior resistance to radiation and reduced effective electron mass, gallium antimonide (GaSb) semiconductors were documented to be suitable for photovoltaic systems applications. However, they were found to suffer from low efficiency. This work has been dedicated to enhance the design of GaSb based single-junction solar cells having window and back surface field made from AlGaAsSb material. The purpose is to maximize their electrical performance by considering doping and thickness of layers as design variables. A methodology of optimization was proposed. It is based on computer aided design through simulations performed under SILVACO-ATLAS software and a numerical procedure that was developed to achieve optimal design of this particular solar cell. The approach encompasses analysis of variance and derivation of response surface models to get explicit expression of the objective function corresponding to efficiency. The obtained results have shown an efficiency which is higher than all the previous known values established in literature.
  • TételSzabadon hozzáférhető
    Simplification of calibration of low-cost MARG sensors without high-precision laboratory equipment
    (Akadémiai Kiadó, 2023-05-09) Abdelhay , Sabir; Alia , Zakriti; nem
    In mechatronic-related applications, estimating orientation from a magnetic, angular rate, and gravity (MARG) sensor array is a significant topic. Representing attitude orientation is a well-known topic in the aerospace industry, where it plays a critical role in airplanes and unmanned aerial vehicles (UAVs), but it has also gained relevance in other sectors. However, most of the sensors utilized are quite expensive, heavy, and large, making them unsuitable for modest applications. This paper examines the performance of several sensors in low-cost hardware and high-acceleration environments. A theorical method was adopted to estimate Euler angles by using accelerometer, gyroscope and magnetometer, and a robust and easy to implement method calibration was proposed to calibrate the MARG sensor without any external equipment. An experimental verification of the proposed calibration method was completed. The experimental results are then interpreted to provide an insight to advantages and disadvantages for using each sensor separately.
  • TételSzabadon hozzáférhető
    Readjustment of a robot for educational purposes
    (Akadémiai Kiadó, 2023-05-09) Szabó, Sándor Imre; Rónai, László; nem
    Development of control of a five degrees of freedom robot is discussed in this paper. Only two robots were made, and one of these is in the University of Miskolc. The robot was made in the 80s for educational purposes, the electronic components were obsolete and control software was missing, therefore it became necessary to perform hardware improvements, and develop a new control program. Inverse kinematics problem of the robot is solved by geometric approach to formulate the joint angles, which will form the basis of the control. A braking system containing electromagnets for the robot is constructed to balance it. A printed circuit board is designed to establish the control of the system, the central element is a Cypress PSoC 5LP platform. The development of the control program is performed in software PSoC Creator 4.4. The developed control system of the robot can receive instructions from a computer via a designed special purpose user program, which is written in Python programming language. Thanks to the improvements, the robot has become operational. Thus, the robot can serve educational purposes performing different manipulation tasks. By completing the developments, students can get to know the structure and programming of the robot, its inverse kinematics problem. This will require the development of practice-oriented tasks in the future.
  • TételSzabadon hozzáférhető
    Hybrid MDA-ANFIS approach based control of grid connected solar system with nine level inverter wind energy conversion
    (Akadémiai Kiadó, 2023-05-09) Apparao, A.; Sekhar, G. Chandra; nem
    A hybrid approach is proposed in this paper to achieve the load power requirement for grid connected hybrid photovoltaic wind system. The proposed approach is the combined execution of both the Modified Dragonfly Algorithm (MDA) and Adaptive Neuro-Fuzzy Interference System (ANFIS), hence it is called MDA-ANFIS. ANFIS approach is improved by the MDA approach to minimize the error functions. The main aim of the proposed approach is satisfying the load power requirement and obtains the maximum energy from the hybrid wind solar system. Through the modelling of operating modes of generation units, the proposed approach determines the switching states of the inverter. The MDA approach is utilized to generate the dataset and the data set is processed by ANFIS, which creates the control signal. By using the proposed approach, it was possible to minimize the system parameter radiation, external disturbances as well as optimally fulfill the load demand. The proposed method is activated in MATLAB/Simulink platform, and its performance is compared with existing methods.
  • TételSzabadon hozzáférhető
    Two-area power system stability analysis by frequency controller with UPFC synchronization and energy storage systems by optimization approach
    (Akadémiai Kiadó, 2023-05-09) Kumaran, G. Kodeeswara; Rajesh , P.; Kumaravel, Sureshkumar; Irusapparajan, G.; nem
    An optimization approach for two-area power system with Unified Power Flow Controller (UPFC) is proposed in this paper. The proposed method is the Atomic Orbital Search (AOS) approach. The proposed approach is applied to achieve full utilization of UPFC and keeps the parameters uncertain. The multivariable PI controller is utilized to control the system controller and eliminates the negative interaction of the controllers. The proposed approach combines the two subsystems by converting algebraic subsystem using differential approximation, which leads to a nonlinear system. The proposed approach provides efficient voltage regulation and quicker damping of inter-area mode oscillations. The proposed UPFC controller eliminates generator oscillation and fault condition, which guarantee the stability of the system as well as provides dynamic power flow control under the tie-line. At last, the proposed method is simulated on MATLAB platform and compared with existing methods. From this comparison, it is shown that the proposed approach provides less oscillation than the existing approach.