Affine and convex separation problems

dc.contributor.advisorBessenyei, Mihály
dc.contributor.authorPénzes, Evelin
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Matematikai Intézethu_HU
dc.date.accessioned2020-05-14T14:48:33Z
dc.date.available2020-05-14T14:48:33Z
dc.date.created2020
dc.description.abstractIn this Thesis we study affine and convex separation problems. First, we discuss convex separation theorems in the context of classical convexity, motivated by the result of Baron, Matkowski and Nikodem. Then, we revisit the affine separation theorem of Behrends and Nikodem with an alternative, elementary and self-contained approach. Finally, we discuss a generalized case of convexity, the notion of h-convexity. Our aim is to present similar separation theorems as previously.hu_HU
dc.description.correctorgj
dc.description.courseAlkalmazott matematikushu_HU
dc.description.degreeMSc/MAhu_HU
dc.format.extent32hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/287304
dc.language.isoenhu_HU
dc.subjectaffine separationhu_HU
dc.subjectconvex separation
dc.subjecth-convexity
dc.subject.dspaceDEENK Témalista::Matematikahu_HU
dc.titleAffine and convex separation problemshu_HU
dc.title.translatedAffin és konvex szeparációs problémákhu_HU
Fájlok