Calculus on time scales

dc.contributor.advisorPáles, Zsolt
dc.contributor.authorKocsis, Mátyás
dc.contributor.departmentDE--Természettudományi és Technológiai Kar--Matematikai Intézet
dc.date.accessioned2024-06-11T07:57:23Z
dc.date.available2024-06-11T07:57:23Z
dc.date.created2024-05-01
dc.description.abstractTime-scale calculus is a modern area of mathematics that unifies discrete and continuous analysis, more specifically the theories of differential equations and difference equations. It is done by constructing a theory for functions defined on so-called time scales which are nonempty, closed subsets of the set of real numbers. Time-scale calculus offers a very general setup to model time-dependent phenomena and thus has a high potential for applications. The purpose of the thesis is to discuss the fundamental concepts and ideas of time-scale calculus, including general description of time scales as well as differentiation and integration on time scales. In doing so, we investigate the properties and connection of the so-called delta and nabla derivatives and Henstock--Kurzweil delta and nabla integrals of functions defined on time scales.
dc.description.courseApplied Mathematics
dc.description.degreeMSc/MA
dc.format.extent36
dc.identifier.urihttps://hdl.handle.net/2437/371343
dc.language.isoen
dc.rights.accessHozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében.
dc.subjecttime scale
dc.subjectdelta derivative
dc.subjectnabla derivative
dc.subjectHenstock--Kurzweil delta integral
dc.subjectHenstock--Kurzweil nabla integral
dc.subject.dspaceMathematics
dc.titleCalculus on time scales
dc.title.translatedKalkulus időskálákon
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
KocsisMatyasThesisMSc.pdf
Méret:
287.09 KB
Formátum:
Adobe Portable Document Format
Leírás:
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.94 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: