Usage of different remote sensing data in land use and vegetation monitoring

dc.contributor.authorBurai, Péter
dc.date.accessioned2021-06-28T10:59:21Z
dc.date.available2021-06-28T10:59:21Z
dc.date.issued2020-09-08
dc.description.abstractThe use of remote sensing in forest management and agriculture is becoming more prominent. The rapid development of technology allowed the emergence of database suitable for precision application in addition to the previously used low-resolution and low data content images. The high resolution, hyperspectral images are not only suitable for separating the different land use categories and vegetation types but also for examining the soil characteristics and biophysical features of plants (Blackburn and Steel, 1999; Condit, 1970). We processed a multispectral satellite image (Landsat 7 ETM+) and a hypespectral areal image (DAIS 7915) about a farm on the plains and evaluated the different image classification methods. During our examinations, we examined the geometrical and radiometrical characteristics of images first, then assigning the training areas, we determined the spectral characteristics of land use categories. We performed a multispectral analysis for checking land use, where we compared controlled and uncontrolled classification systems to check their reliability. We used areal and spectral reductions to make the classifications more accurate and to reduce the length of calculations.en
dc.formatapplication/pdf
dc.identifier.citationActa Agraria Debreceniensis, No. 22 (2006) , 7-12
dc.identifier.doihttps://doi.org/10.34101/actaagrar/22/3178
dc.identifier.issn2416-1640
dc.identifier.issue22
dc.identifier.jatitleActa agrar. Debr.
dc.identifier.jtitleActa Agraria Debreceniensis
dc.identifier.urihttps://hdl.handle.net/2437/316684en
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/actaagrar/article/view/3178
dc.rights.accessOpen Access
dc.subjectremote sensingen
dc.subjectGISen
dc.subjectclassificationen
dc.titleUsage of different remote sensing data in land use and vegetation monitoringen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
pdf
Méret:
399.82 KB
Formátum:
Adobe Portable Document Format