Mathematical structure of positive operator valued measures and applications

dc.contributor.advisorMolnár, Lajos
dc.contributor.authorBeneduci, Roberto
dc.contributor.departmentMatematika- és számítástudományok doktori iskolahu
dc.contributor.submitterdepDE--Természettudományi és Technológiai Kar -- Analízis Tanszék
dc.date.accessioned2014-11-17T15:31:05Z
dc.date.available2014-11-17T15:31:05Z
dc.date.created2014hu_HU
dc.date.defended2015-02-06
dc.description.abstractThe present dissertation focuses on the analysis of the mathematical structure of the Positive Operator Valued Measures (POVM) and their relevance to quantum mechanics. In particular we analyze: 1. The relationships between POVMs and PVMs (Projection Valued Measures) and prove that each commutative POVM F is the smearing (realized by a Feller Markov Kernel) of a spectral measure. That suggests an interpretation of commutative POVMs as the randomization of real PVMs. Moreover, we characterize the POVMs whose smearing can be realized by strong Feller Markov kernels. 2. The relationships between the characterization of commutative POVMs in item 1) and Naimark's dilation theorem. We prove that the self-adjoint operator A corresponding to the spectral measure E, of which F is the smearing, is the projection of a Naimark operator. 3. Analysis of the informational content of a POVM. We introduce an equivalence relation on the set of observables which we compare with other well known equivalence relations and prove that it is the only one for which E is always equivalent to F. 4. The uniform continuity of a POVM and its relevance to the problem of localization. We take into consideration a non-commutative POVM defined on a locally compact second countable Haussdorf topological space and give necessary and sufficient conditions for it to be uniformly continuous. Moreover, we show the relevance of this result to relativistic quantum mechanics.hu_HU
dc.format.extent111hu_HU
dc.identifier.urihttp://hdl.handle.net/2437/200830
dc.language.isoenhu_HU
dc.subjectPositive Operator Valued Measureshu_HU
dc.subjectFuntional Analysishu_HU
dc.subjectFoundations of Quantum Mechanicshu_HU
dc.subjectNaimark dilation Theoremhu_HU
dc.subject.disciplineMatematika- és számítástudományokhu
dc.subject.sciencefieldTermészettudományokhu
dc.titleMathematical structure of positive operator valued measures and applicationshu_HU
dc.title.translatedA pozitív operátor értékű mértékek matematikai struktúrája és alkalmazásaihu_HU
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 4 (Összesen 4)
Nincs kép
Név:
dissertation.pdf
Méret:
722.76 KB
Formátum:
Adobe Portable Document Format
Leírás:
Az értekezés angolul - Nem hozzáférhető
Nincs kép
Név:
thesis.pdf
Méret:
361.07 KB
Formátum:
Adobe Portable Document Format
Leírás:
A tézisek angolul - Nem hozzáférhető
Nincs kép
Név:
dissertation_t.pdf
Méret:
722.36 KB
Formátum:
Adobe Portable Document Format
Leírás:
Az értekezés angolul
Nincs kép
Név:
thesis_t.pdf
Méret:
365.98 KB
Formátum:
Adobe Portable Document Format
Leírás:
A tézisek angolul