Mathematical structure of positive operator valued measures and applications
dc.contributor.advisor | Molnár, Lajos | |
dc.contributor.author | Beneduci, Roberto | |
dc.contributor.department | Matematika- és számítástudományok doktori iskola | hu |
dc.contributor.submitterdep | DE--Természettudományi és Technológiai Kar -- Analízis Tanszék | |
dc.date.accessioned | 2014-11-17T15:31:05Z | |
dc.date.available | 2014-11-17T15:31:05Z | |
dc.date.created | 2014 | hu_HU |
dc.date.defended | 2015-02-06 | |
dc.description.abstract | The present dissertation focuses on the analysis of the mathematical structure of the Positive Operator Valued Measures (POVM) and their relevance to quantum mechanics. In particular we analyze: 1. The relationships between POVMs and PVMs (Projection Valued Measures) and prove that each commutative POVM F is the smearing (realized by a Feller Markov Kernel) of a spectral measure. That suggests an interpretation of commutative POVMs as the randomization of real PVMs. Moreover, we characterize the POVMs whose smearing can be realized by strong Feller Markov kernels. 2. The relationships between the characterization of commutative POVMs in item 1) and Naimark's dilation theorem. We prove that the self-adjoint operator A corresponding to the spectral measure E, of which F is the smearing, is the projection of a Naimark operator. 3. Analysis of the informational content of a POVM. We introduce an equivalence relation on the set of observables which we compare with other well known equivalence relations and prove that it is the only one for which E is always equivalent to F. 4. The uniform continuity of a POVM and its relevance to the problem of localization. We take into consideration a non-commutative POVM defined on a locally compact second countable Haussdorf topological space and give necessary and sufficient conditions for it to be uniformly continuous. Moreover, we show the relevance of this result to relativistic quantum mechanics. | hu_HU |
dc.format.extent | 111 | hu_HU |
dc.identifier.uri | http://hdl.handle.net/2437/200830 | |
dc.language.iso | en | hu_HU |
dc.subject | Positive Operator Valued Measures | hu_HU |
dc.subject | Funtional Analysis | hu_HU |
dc.subject | Foundations of Quantum Mechanics | hu_HU |
dc.subject | Naimark dilation Theorem | hu_HU |
dc.subject.discipline | Matematika- és számítástudományok | hu |
dc.subject.sciencefield | Természettudományok | hu |
dc.title | Mathematical structure of positive operator valued measures and applications | hu_HU |
dc.title.translated | A pozitív operátor értékű mértékek matematikai struktúrája és alkalmazásai | hu_HU |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 4 (Összesen 4)
Nincs kép
- Név:
- dissertation.pdf
- Méret:
- 722.76 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- Az értekezés angolul - Nem hozzáférhető
Nincs kép
- Név:
- thesis.pdf
- Méret:
- 361.07 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- A tézisek angolul - Nem hozzáférhető
Nincs kép
- Név:
- dissertation_t.pdf
- Méret:
- 722.36 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- Az értekezés angolul
Nincs kép
- Név:
- thesis_t.pdf
- Méret:
- 365.98 KB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- A tézisek angolul