On the nine-point conic of hyperbolic triangles
Dátum
2025-12-01
Szerzők
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Absztrakt
In the Cayley–Klein model, we review some basic results concerning the geometry of hyperbolic triangles. We introduce a new definition of the circumcircle of a hyperbolic triangle, guaranteed to exist in every case, and describe its main properties. Our central theorem establishes, by means of purely elementary projective geometric arguments, that a hyperbolic triangle has a nine-point conic if and only if it is a right triangle. Subject Classification: 51M09
Leírás
Kulcsszavak
Jogtulajdonos
Zoltán Szilasi
URL
Jelzet
Egyéb azonosító
Forrás
Teaching Mathematics and Computer Science, Vol. 23 No. 2 (2025)
, 195-211