On the nine-point conic of hyperbolic triangles
| dc.contributor.author | Szilasi, Zoltán | |
| dc.date.accessioned | 2025-12-04T19:46:49Z | |
| dc.date.available | 2025-12-04T19:46:49Z | |
| dc.date.issued | 2025-12-01 | |
| dc.description.abstract | In the Cayley–Klein model, we review some basic results concerning the geometry of hyperbolic triangles. We introduce a new definition of the circumcircle of a hyperbolic triangle, guaranteed to exist in every case, and describe its main properties. Our central theorem establishes, by means of purely elementary projective geometric arguments, that a hyperbolic triangle has a nine-point conic if and only if it is a right triangle. Subject Classification: 51M09 | en |
| dc.format | application/pdf | |
| dc.identifier.citation | Teaching Mathematics and Computer Science, Vol. 23 No. 2 (2025) , 195-211 | |
| dc.identifier.doi | https://doi.org/10.5485/TMCS.2025.15646 | |
| dc.identifier.eissn | 2676-8364 | |
| dc.identifier.issn | 1589-7389 | |
| dc.identifier.issue | 2 | |
| dc.identifier.jatitle | Teach. Math. Comp. Sci. | |
| dc.identifier.jtitle | Teaching Mathematics and Computer Science | |
| dc.identifier.uri | https://hdl.handle.net/2437/399463 | |
| dc.identifier.volume | 23 | |
| dc.language | en | |
| dc.relation | https://ojs.lib.unideb.hu/tmcs/article/view/15646 | |
| dc.rights.access | Open Access | |
| dc.rights.owner | Zoltán Szilasi | |
| dc.subject | Cayley-Klein plane | en |
| dc.subject | hyperbolic triangles | en |
| dc.subject | Feuerbach circle | en |
| dc.subject | eleven-point conic | en |
| dc.title | On the nine-point conic of hyperbolic triangles | en |
| dc.type | folyóiratcikk | hu |
| dc.type | article | en |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)