Gépi és mély tanulási eljárások alkalmazása a városi környezet vizsgálatában, nagyfelbontású és különböző dimenziójú távérzékelt adatok alapján
Dátum
Szerzők
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Absztrakt
Munkám során a célom elsőként különböző tetőfedő anyagok osztályozhatóságának a vizsgálata volt, eltérő körülmények között. Egy kiválasztott mintaterületen a három leggyakrabban előforduló tetőfedő típust vontam be az osztályozásba, melyet WorldView-2 műholdfelvétel alapján végeztem el. Következő lépésként megvizsgáltam, hogy az osztályozások során a területi autokorreláció milyen hatást gyakorol a modellek pontosságára. A kutatásom során szintén célom volt megvizsgálni, hogy a relatívan olcsón előállítható vagy beszerezhető felvételeken végzett, modern, mély konvolúciós neurális hálózatokon alapuló objektum detektálás milyen pontossággal alkalmazható épületek kinyerésére.
In my work, I first investigated the separability of different roofing materials under different conditions. I selected the three most common roofing types in a selected study area, and performed classification based on a WorldView-2 satellite image. I then examined the effect of spatial autocorrelation on the accuracy of the models during classification. Additionally, my research aims to examine the accuracy of object detection based on deep convolutional neural networks on relatively inexpensive or easily obtainable images for building extraction.