Force-displacement relationships for NiTi alloy helical springs by using ANSYS: Superelasticity and shape memory effect

Fájlok
Dátum
2022-10-27
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Akadémiai Kiadó
Absztrakt

Shape memory alloys are smart materials which have remarkable properties that promoted their use in a large variety of innovative applications. In this work, the shape memory effect and superelastic behavior of nickel-titanium helical spring was studied based on the finite element method. The three-dimensional constitutive model proposed by Auricchio has been used through the built-in library of ANSYS® Workbench 2020 R2 to simulate the superelastic effect and one-way shape memory effect which are exhibited by nickel-titanium alloy. Considering the first effect, the associated force-displacement curves were calculated as function of displacement amplitude. The influence of changing isothermal body temperature on the loading-unloading hysteretic response was studied. Convergence of the numerical model was assessed by comparison with experimental data taken from the literature. For the second effect, force-displacement curves that are associated to a complete one-way thermomechanical cycle were evaluated for different configurations of helical springs. Explicit correlations that can be applied for the purpose of helical spring’s design were derived.

Leírás
Kulcsszavak
Jogtulajdonos
Jelzet
Egyéb azonosító
Forrás
Támogatás