Production of Liquid Hydrocarbons from Plastic Wastes
Fájlok
Dátum
Folyóirat címe
Folyóirat ISSN
Kötet címe (évfolyam száma)
Kiadó
Absztrakt
Thermal pyrolysis of HDPE, LDPE, PP and PS plastic wastes were performed in a batch reactor and the yields of pyrolysis oils and liquid transportation fuels prepared by atmospheric distillation were determined. The gasoline fractions were tested in a traditional spark-ignition engine without any modifications or fuel blending. Fuel consumption and exhaust gas emission (NO x , CO) were measured and compared to a commercial fuel (RON = 95). PS generated 70.5% gasoline range hydrocarbons from the solid waste, followed by PP with 42.1%, LDPE with 40.8% and HDPE with 37.3%. The fuel consumption was reduced by 9.1-9.4% in the case of PS compared to reference measurement. Reduction in fuel consumption was noticeable at HDPE, LDPE and PP as well. PS gasoline decreased by 91-96%, while HDPE, LDPE and PP more likely increased the CO emission of the engine compared to commercial gasoline. The results show that pyrolysis of plastic wastes is a promising method to generate value added liquid transportation fuels and reduce the footprint of waste accumulation in landfills.