Displacement: Translation and Rotation. Differences and Similarities in the Discrete and Continuous Models

dc.contributor.authorLámer, Géza
dc.date.issued2019-03-03
dc.description.abstractThe motion (displacement) of the Euclidean space can be decomposed into translation and rotation. The two kinds of motion of the Euclidean space based on two structures of the Euclidean space: The first one is the topological structure, the second one is the idea of distance. The motion is such a (topological) map, that the distance of any two points remains the same. The bounded and closed domain of the Euclidean space is taken as a model of the rigid body. The bounded and closed domain of the Euclidean space is also taken as a model of the deformable solid body. The map – i.e. the displacement field – of the deformable solid body is continuous, but is not (necessarily) motion; the size and the shape of body can change. The material has atomic-molecular structure. In compliance with it, the material can be comprehended as a discrete system. In this case the elements of the material, as an atom, molecule, grain, can be comprehended as either material point, or rigid body. In the first case the kinematical freedom is the translation, in the latter case the translation and the rotation. In the paper we analyse how the kinematical behaviour of the discrete and continuous mechanical system can be characterise by translation and rotation. In the discrete system the two motions are independent variable. At the same time they characterise the movement of the body different way. For instance homogeneous local translation gives the global translation, but the homogeneous local rotation does not give the global rotation. To realise global rotation in a discrete system on one hand global rotation of the position of the discrete elements, on the other hand homogeneous local rotations of the discrete elements in harmony with global rotation are required. In the continuous system the two kinds of movement cannot be interpreted: a point cannot rotate, a rotation of surrounding of a point or direction can be interpreted. The kinematical characteristics, as the displacement (practically this is equal to translation) of (neighbourhood of) point, the rotation of surrounding of that point and the rotation of a direction went through that point are not independent variables: the translation of a point determines the rotation of the surrounding of that point as well as the rotation of a direction went through that point. With accordance this statement the displacement (practically translation) (field) as the only kinematical variable can be interpreted in the continuous medium.en
dc.formatapplication/pdf
dc.identifier.citationInternational Journal of Engineering and Management Sciences, Vol. 4 No. 1 (2019) , 104-124
dc.identifier.doihttps://doi.org/10.21791/IJEMS.2019.1.14.
dc.identifier.eissn2498-700X
dc.identifier.issue1
dc.identifier.jtitleInternational Journal of Engineering and Management Sciences
dc.identifier.urihttps://hdl.handle.net/2437/295254en
dc.identifier.volume4
dc.languageen
dc.relationhttps://ojs.lib.unideb.hu/IJEMS/article/view/5196
dc.rights.accessOpen Access
dc.rights.ownerby the authors
dc.subjectdisplacementen
dc.subjecttranslationen
dc.subjectrotationen
dc.subjectdiscrete mechanical modelen
dc.subjectcontinuous mechanical modelen
dc.titleDisplacement: Translation and Rotation. Differences and Similarities in the Discrete and Continuous Modelsen
dc.typefolyóiratcikkhu
dc.typearticleen
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
pdf
Méret:
1.75 MB
Formátum:
Adobe Portable Document Format