Advanced Metaheuristics for Optimization

dc.contributor.advisorFazekas, Gabor
dc.contributor.authorSabagh Nejad, Anahita
dc.contributor.departmentInformatikai tudományok doktori iskolahu
dc.contributor.submitterdepInformatikai Kar
dc.date.accessioned2024-01-31T10:01:01Z
dc.date.available2024-01-31T10:01:01Z
dc.date.created2024-01-29
dc.date.defended2024-01-29
dc.description.abstractThe main purpose of this dissertation is to introduce two new advanced methods of solving a Traveling salesman problem (TSP) using metaheuristics. Solving TSP is important as it is an NP-hard and can’t be solved in a polynomial time. In my new methods, I applied k-means to cluster the data into smaller parts and I used the Whale Optimization algorithm (WOA) as a bio-inspired algorithm. I merged TSP with K-means and WOA, and I assigned a number for thresholding (T- value) to decide the maximum number of cities that can be placed in each cluster. This way the fitness function and timing of solving TSP improved. The two methods have close pseudocodes. There is a third model as well that is proposed for future works.
dc.format.extent174
dc.identifier.urihttps://hdl.handle.net/2437/365770
dc.language.isoen
dc.subjectMetaheuristics
dc.subjectTSP
dc.subjectK-means
dc.subjectWhale algorithm
dc.subjectOptimization
dc.subject.disciplineInformatikai tudományokhu
dc.subject.sciencefieldMűszaki tudományokhu
dc.titleAdvanced Metaheuristics for Optimization
dc.title.translatedErweiterte Metaheuristik zur Optimierung
Fájlok
Eredeti köteg (ORIGINAL bundle)
Megjelenítve 1 - 2 (Összesen 2)
Nincs kép
Név:
Dissertation 3.pdf
Méret:
8.4 MB
Formátum:
Adobe Portable Document Format
Leírás:
Dissertation
Nincs kép
Név:
Short Thesis 4.pdf
Méret:
2.38 MB
Formátum:
Adobe Portable Document Format
Leírás:
Short theses
Engedélyek köteg
Megjelenítve 1 - 1 (Összesen 1)
Nincs kép
Név:
license.txt
Méret:
1.93 KB
Formátum:
Item-specific license agreed upon to submission
Leírás: