Topological loop with solvable multiplication group
dc.contributor.advisor | Figula, Ágota | |
dc.contributor.author | Al-Abayechi, Ameer Mohammedhussein Hasan | |
dc.contributor.department | Matematika- és számítástudományok doktori iskola | hu |
dc.contributor.submitterdep | DE--Természettudományi és Technológiai Kar -- Matematikai Intézet, Geometriai Tanszék | |
dc.date.accessioned | 2021-06-15T19:51:44Z | |
dc.date.available | 2021-06-15T19:51:44Z | |
dc.date.created | 2021 | hu_HU |
dc.date.defended | 2021-07-12 | |
dc.description.abstract | In this dissertation we consider connected topological proper loops L such that their multiplication groups Mult(L) are solvable Lie groups. We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup R by the 2-dimensional nonabelian Lie group or by an elementary fi liform loop. Moreover, if the group Mult(L) has dimension at most 6, then the loop L is centrally nilpotent of class two. We determine the structure of solvable Lie groups which are multiplication groups of 3-dimensional topological loops. We find that there are seven classes of 6-dimensional solvable indecomposable Lie algebras with 5-dimensional nilradical which are the Lie algebras of the multiplication groups Mult(L) of 3-dimensional topological loops L. Among the 6-dimensional solvable indecomposable Lie algebras having 4-dimensional nilradical there are three classes which are Lie algebras of the groups Mult(L). We give the 18 families of decomposable solvable Lie algebras with 1-dimensional centre which are the Lie algebras of Mult(L). Among the 6-dimensional Lie algebras having 2-dimensional centre there are 9 families which can be realized as the Lie algebra of the group Mult(L) of a 3-dimensional connected simply connected topological proper loop L. | hu_HU |
dc.format.extent | 120 | hu_HU |
dc.identifier.uri | http://hdl.handle.net/2437/311106 | |
dc.language.iso | en | hu_HU |
dc.subject | topological loop | hu_HU |
dc.subject | multiplication group of a loop | |
dc.subject | solvable Lie groups and Lie algebras | |
dc.subject | classical and congruence solvability | |
dc.subject | centrally nilpotence of a loop | |
dc.subject | topological transformation group | |
dc.subject | transversals | |
dc.subject | topologikus loop | |
dc.subject | egy loop szorzáscsoportja | |
dc.subject | felolható Lie csoportok és Lie algebrák | |
dc.subject | klasszikus és kongruencia feloldhatóság | |
dc.subject | egy loop centrális nilpotenciája | |
dc.subject | topologikus transzformáció csoport | |
dc.subject | transzverzálisok | |
dc.subject.discipline | Matematika- és számítástudományok | hu |
dc.subject.sciencefield | Természettudományok | hu |
dc.title | Topological loop with solvable multiplication group | hu_HU |
dc.title.translated | Topologikus loop feloldható szorzáscsoporttal | hu_HU |
Fájlok
Eredeti köteg (ORIGINAL bundle)
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 1.93 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: