Machine Learning-Based Strawberry Disease Detection and Classification for Sustainable Smart Farming
| dc.contributor.advisor | Géza, Husi | |
| dc.contributor.author | Toalombo Chicaiza, Inti Rumiñahui | |
| dc.contributor.department | DE--Műszaki Kar | |
| dc.date.accessioned | 2025-09-04T15:15:42Z | |
| dc.date.available | 2025-09-04T15:15:42Z | |
| dc.date.created | 2025 | |
| dc.description.abstract | This thesis project explores machine learning-based solutions for detecting and classifying seven common strawberry diseases to promote sustainable smart farming in Ecuador. Using advanced computer vision techniques, the study fine-tunes state-of-the-art models like YOLOv10, FR-DETR, and SAM2 on a dataset of 4,900 images collected from Ecuadorian fields and open-source platforms. YOLOv10 achieved a mAP@0.5 of 0.95 and an F1-score of 0.94, demonstrating strong real-time detection capabilities, while FR-DETR attained a comparable mAP@0.5 of 0.961 but exhibited higher computational demands. SAM2 was fine-tuned for precise segmentation of diseased areas, enhancing detection accuracy. The research highlights YOLO's suitability for practical deployment due to its speed and efficiency, while FR-DETR's transformer-based architecture excels in global context modeling for larger diseased regions. Challenges such as dataset imbalance and class-specific detection issues were identified, with recommendations for future improvements through data augmentation and hyperparameter tuning. The findings underscore the potential of AI-driven tools in transitioning Ecuadorian strawberry farming from traditional pesticide-heavy methods to more sustainable practices. | |
| dc.description.course | Mechatronikai mérnöki | |
| dc.description.degree | MSc/MA | |
| dc.format.extent | 69 | |
| dc.identifier.uri | https://hdl.handle.net/2437/397242 | |
| dc.language.iso | en_US | |
| dc.rights.info | Hozzáférhető a 2022 decemberi felsőoktatási törvénymódosítás értelmében. | |
| dc.subject | Machine Learning | |
| dc.subject | Smart Farming | |
| dc.subject | Computer Vision | |
| dc.subject.dspace | Műszaki tudományok | |
| dc.title | Machine Learning-Based Strawberry Disease Detection and Classification for Sustainable Smart Farming | |
| dc.title.translated | Maschinelles Lernen zur Erkennung und Klassifizierung von Erdbeerkrankheiten für eine nachhaltige, intelligente Landwirtschaft | |
| dc.title.translated | Detección y Clasificación de Enfermedades de la Fresa Basadas en Aprendizaje Automático para una Agricultura Inteligente y Sostenible |
Fájlok
Eredeti köteg (ORIGINAL bundle)
1 - 1 (Összesen 1)
Nincs kép
- Név:
- Thesis Inti Toalombo DEA.pdf
- Méret:
- 6.71 MB
- Formátum:
- Adobe Portable Document Format
- Leírás:
- Thesis
Engedélyek köteg
1 - 1 (Összesen 1)
Nincs kép
- Név:
- license.txt
- Méret:
- 2.19 KB
- Formátum:
- Item-specific license agreed upon to submission
- Leírás: